{-# LANGUAGE LambdaCase, TupleSections, UnicodeSyntax, Rank2Types #-} {-# LANGUAGE FlexibleContexts, FlexibleInstances #-} module Main (main) where import Control.Applicative import Control.Arrow (first, second, (&&&)) import Control.Monad import Control.Monad.Writer import Data.Function import Data.List import Data.Maybe import Data.Monoid import Data.Array (Array, (!), (//)) import System.IO --import System.Time import System.Timeout import System.CPUTime import Debug.Trace import qualified Data.Array as A {-# ANN module "HLint: ignore Use if" #-} {-# ANN module "HLint: ignore Eta reduce" #-} {-# ANN module "HLint: ignore Redundant $" #-} {-# ANN module "HLint: ignore Redundant do" #-} type Color = Int type Rotation = Int type Block = (Color, Color) type Column = Int type Row = Int data Cell = Empty | Skull | Color Color deriving (Eq, Ord, Show) type Grid = Array (Column, Row) Cell main ∷ IO () main = do hSetBuffering stdout NoBuffering -- DO NOT REMOVE forever $ do blocks ← replicateM 8 getBlock --start ← getClockTime myGrid ← getGrid opGrid ← getGrid --let traceLength xs = traceShow (length xs) xs let limiter xs = {-traceLength <$>-} evaluateListWithTimeout 88000 xs (col, rot) ← step limiter blocks myGrid --end ← col `seq` rot `seq` getClockTime --let ms = round ((end `diffSeconds` start) * 1000) --hPutStrLn stderr $ show ms ++ "ms" putStrLn $ unwords [show col, show rot] getBlock ∷ IO Block getBlock = do [colorA, colorB] ← map read . words <$> getLine pure (colorA, colorB) getGrid ∷ IO Grid getGrid = fmap (A.array ((0,0),(5,11)) . concat) $ forM [0..11] $ \row → do line ← getLine pure [ ((col, row), cell ch) | (col, ch) ← zip [0..] line ] where cell '.' = Empty cell '0' = Skull cell ch = Color (read [ch]) newtype Candidates = Candidates [(Int, ((Column, Rotation), Candidates))] step ∷ Functor f ⇒ (∀a. [a] → f [a]) → [Block] → Grid → f (Column, Rotation) step limiter blocks myGrid = select <$> limiter stream where Candidates start = candidates blocks myGrid stream = concatMap snd . drop 1 . takeWhile (not . null . snd) . iterate deepen . (0,) . take 40 . sortBy (flip compare `on` fst) $ start deepen (depth, cs0) = {- trace (show depth ++ " " ++ show (fst (head cs))) $ -} (depth+1, cs') where cs = sortBy (flip compare `on` fst) cs0 cs' = map (first (`div` (depth + 3))) . take 40 . sortBy (flip compare `on` fst) $ concatMap (\k → mapMaybe (candidate k) cs) [0..6] candidate n c@(_, (_, Candidates cs)) = listToMaybe (drop n cs) select [] = (0, 0) select cs = fst $ snd $ maximumBy (compare `on` fst) cs candidates ∷ [Block] → Grid → Candidates candidates [] _ = Candidates [] candidates (block:blocks) grid0 = Candidates cs where try col rot = do (grid1, points1) ← simulate grid0 block col rot let score1 = score grid1 points1 let Candidates cs1 = candidates blocks grid1 let adjust (score2, (mv2, Candidates cs2)) = let scoreAvg = (2 * score1 + 3 * score2) `div` 5 in (score1 + score2, ((col, rot), Candidates (map adjust cs2))) pure $! score1 `seq` (score1, ((col, rot), Candidates (map adjust cs1))) hint = uncurry (+) block `div` 2 columns = filter (\c → c >= 0 && c <= 5) $ map (hint +) [0,-1,1,-2,2,-3,3,-4,4,-5,5] rotations = [1,0,3,2] cs = catMaybes $ try <$> columns <*> rotations score ∷ Grid → Int → Int score grid points = 100 * points + 10 * matches + emptyNeighbours where matches = sum . map (^2) . filter (> 1) . map length $ colorGroups colorCells = filter (isColor . snd) $ A.assocs grid colorGroups = connectedGroups adjacentMatch colorCells neighbours (c,r) = map (id &&& (grid!)) $ filter (A.inRange (A.bounds grid)) $ [(c-1,r), (c+1,r), (c,r-1), (c,r+1)] supported (c,r) = any (\n → r+n > 11 || grid!(c,r+n) /= Empty) [0..3] emptyNeighbours = flip count colorCells $ any (\(p,v) → v == Empty && supported p) . neighbours . fst count ∷ (a → Bool) → [a] → Int count p xs = length (filter p xs) simulate ∷ Grid → Block → Column → Rotation → Maybe (Grid, Int) simulate grid (colorA, colorB) col rot | not (A.inRange (A.bounds grid) crA) || not (A.inRange (A.bounds grid) crB) || grid!crA /= Empty || grid!crB /= Empty = Nothing | otherwise = Just . second getSum . runWriter $ simFall startGrid 1 where (crA, crB) = case rot of 0 → ((col,0), (col+1,0)) 1 → ((col,1), (col, 0)) 2 → ((col,0), (col-1,0)) 3 → ((col,0), (col, 1)) startGrid = grid // [ (crB, Color colorB), (crA, Color colorA) ] {- addSkulls ∷ Int → Grid → Grid addSkulls nskulls grid = newGrid where packColumn c = zipWith (\r x → ((c,r),x)) [11,10..0] $ (++ repeat Empty) $ (++ replicate nskulls Skull) $ takeWhile (/= Empty) $ map (\r → grid!(c,r)) [11,10..0] newGrid = A.array ((0,0),(5,11)) $ concatMap packColumn [0..5] -} simFall ∷ (Applicative m, MonadWriter (Sum Int) m) ⇒ Grid → Int → m Grid simFall grid = simDisappear newGrid where packColumn c = zipWith (\r x → ((c,r),x)) [11,10..0] $ (++ repeat Empty) $ filter (/= Empty) $ map (\r → grid!(c,r)) [11,10..0] newGrid = A.array ((0,0),(5,11)) $ concatMap packColumn [0..5] simDisappear ∷ (Applicative m, MonadWriter (Sum Int) m) ⇒ Grid → Int → m Grid simDisappear grid stage = case null erased of True → pure grid False → do tell . Sum $ 10 * blocksCleared * scale simFall erasedGrid (stage + 1) where colorCells = filter (isColor . snd) $ A.assocs grid skullCells = filter ((== Skull) . snd) $ A.assocs grid groups = connectedGroups adjacentMatch colorCells largeGroups = filter ((>= 4) . length) groups erasedColors = concat largeGroups erasedSkulls = filter (\(cr,_) → any (adjacent cr . fst) erasedColors) skullCells erased = erasedColors ++ erasedSkulls erasedGrid = grid // map (second (const Empty)) erased blocksCleared = length erasedColors chainPower = if stage < 2 then 0 else 8 * 2^(stage-2) uniqueColors = length . nub $ map snd erasedColors colorBonus = if uniqueColors < 2 then 0 else 2^(uniqueColors-1) groupBonus = sum (map (perGroupBonus . length) largeGroups) perGroupBonus n = if n >= 11 then 8 else n - 4 scale = max 1 $ min 999 $ chainPower + colorBonus + groupBonus isColor ∷ Cell → Bool isColor Empty = False isColor Skull = False isColor (Color _) = True adjacent ∷ (Column,Row) → (Column,Row) → Bool adjacent (c1,r1) (c2,r2) = (c1 == c2 && (r1 == r2 - 1 || r1 == r2 + 1)) || (r1 == r2 && (c1 == c2 - 1 || c1 == c2 + 1)) adjacentMatch ∷ ((Column, Row), Cell) → ((Column, Row), Cell) → Bool adjacentMatch (cr1,x1) (cr2,x2) = x1 == x2 && adjacent cr1 cr2 connectedGroups ∷ (a → a → Bool) → [a] → [[a]] connectedGroups p rem = case rem of [] → [] (x:rem') → let go fringe others = case fringe of [] → ([], others) (y:fringe') → let (adj, notAdj) = partition (p y) others in first (y:) $ go (fringe' ++ adj) notAdj (conn, notConn) = go [x] rem' in conn : connectedGroups p notConn {- diffSeconds ∷ ClockTime → ClockTime → Double diffSeconds (TOD s' p') (TOD s p) = fromIntegral ((s' - s) * 1000000000000 + (p' - p)) / 1e12 -} -- Compute elements of the list to WHNF for `t` microseconds. After -- `t` microseconds, abandon the calculation and terminate the list. evaluateListWithTimeout ∷ Integer → [a] → IO [a] evaluateListWithTimeout t xs = do end ← (+) <$> getCPUTime <*> pure (1000000 * t) flip fix xs $ \loop xs → do now ← getCPUTime r ← timeout (fromIntegral $ max 0 (end - now) `div` 1000000) $ case xs of [] → pure [] (a:as) → pure $! a `seq` (a:as) case r of Nothing → pure [] Just [] → pure [] Just (a:as) → (a:) <$> loop as