CodinGame/SmashTheCode/SmashTheCode.hs

246 lines
8.9 KiB
Haskell

{-# LANGUAGE LambdaCase, TupleSections, UnicodeSyntax, Rank2Types #-}
{-# LANGUAGE FlexibleContexts, FlexibleInstances, UndecidableInstances #-}
import Control.Applicative
import Control.Arrow (first, second, (&&&))
import Control.Concurrent
import Control.Monad
import Control.Monad.State
import Control.Monad.Writer
import Data.Function
import Data.List
import Data.Maybe
import Data.Monoid
import Data.Array (Array, (!), (//))
import System.IO
import System.Random
import System.Time
import System.Timeout
import System.CPUTime
import Debug.Trace
import qualified Data.Array as A
import qualified Data.Foldable as F
import qualified Data.Traversable as T
{-# ANN module "HLint: ignore Use if" #-}
{-# ANN module "HLint: ignore Redundant $" #-}
{-# ANN module "HLint: ignore Redundant do" #-}
type Color = Int
type Rotation = Int
type Block = (Color, Color)
type Column = Int
type Row = Int
data Cell = Empty | Skull | Color Color deriving (Eq, Ord, Show)
type Grid = Array (Column, Row) Cell
main IO ()
main = do
hSetBuffering stdout NoBuffering -- DO NOT REMOVE
threadDelay =<< randomRIO (0,800000)
forever $ do
blocks liftIO (replicateM 8 getBlock)
start liftIO getClockTime
myGrid liftIO getGrid
opGrid liftIO getGrid
let limiter = evaluateListWithTimeout 88000
(col, rot) step limiter blocks myGrid
end col `seq` rot `seq` liftIO getClockTime
let ms = round ((end `diffSeconds` start) * 1000)
liftIO $ hPutStrLn stderr $ show ms ++ "ms"
liftIO $ putStrLn $ unwords [show col, show rot]
getBlock IO Block
getBlock = do
[colorA, colorB] map read . words <$> getLine
pure (colorA, colorB)
getGrid IO Grid
getGrid = fmap (A.array ((0,0),(5,11)) . concat) $
forM [0..11] $ \row do
line getLine
pure [ ((col, row), cell ch) | (col, ch) zip [0..] line ]
where
cell '.' = Empty
cell '0' = Skull
cell ch = Color (read [ch])
newtype Candidates = Candidates [(Int, ((Column, Rotation), Candidates))]
step Functor f (a. [a] f [a]) [Block] Grid f (Column, Rotation)
step limiter blocks myGrid = select <$> limiter stream
where
Candidates start = candidates blocks myGrid
stream = deepen (take 11 start)
deepen cs = (cs ++) $ do
k [0..]
n [0..8]
mapMaybe (follow n <=< other k) cs
dummy = (-1000000, ((0, 0), Candidates []))
follow 0 c = Just c
follow _ (_, (_, Candidates [])) = Nothing
follow n (_, (_, Candidates (c':_))) = follow (n-1) c'
other n c@(_, (_, Candidates cs)) = listToMaybe (drop n cs)
select cs = trace (show $ length cs)
$ fst $ snd $ maximumBy (compare `on` fst) (dummy:cs)
candidates [Block] Grid Candidates
candidates [] _ = Candidates []
candidates (block:blocks) grid = Candidates best
where
try c rot = do
(grid', points) simulate grid block c rot
let score1 = score grid' points
let adjust (score2, (mv', cs')) =
let scoreAvg = (2 * score1 + 3 * score2) `div` 5
in (scoreAvg, ((c, rot), cs'))
let Candidates cs = candidates blocks grid'
pure $! score1 `seq` (score1, ((c, rot), Candidates (map adjust cs)))
hint = uncurry (+) block `div` 2
columns = filter (\c c >= 0 && c <= 5) $ map (hint +) [0,-1,1,-2,2,-3,3,-4,4,-5,5]
rotations = [1,0,3,2]
best = sortBy (flip compare `on` fst) . catMaybes
$ try <$> columns <*> rotations
score Grid Int Int
score grid points = 10*points + matches -- + 50*nonSkulls
where
free = length $ filter (== Empty) $ A.elems grid
nonSkulls = length $ filter (/= Skull) $ A.elems grid
levels = length $ takeWhile emptyLevel [0..11]
matches = sum . map (^2) . filter (> 1) . map length $ colorGroups
emptyLevel r = all (\c grid!(c,r) == Empty) [0..5]
colorCells = filter (isColor . snd) $ A.assocs grid
colorGroups = connectedGroups adjacentMatch colorCells
simulate Grid Block Column Rotation Maybe (Grid, Int)
simulate grid (colorA, colorB) col rot
| not (A.inRange (A.bounds grid) crA) ||
not (A.inRange (A.bounds grid) crB) ||
grid!crA /= Empty || grid!crB /= Empty = Nothing
| otherwise = Just . second getSum . runWriter $ simFall startGrid 1
where
(crA, crB) = case rot of
0 ((col,0), (col+1,0))
1 ((col,1), (col, 0))
2 ((col,0), (col-1,0))
3 ((col,0), (col, 1))
startGrid = grid // [ (crB, Color colorB), (crA, Color colorA) ]
addSkulls Int Grid Grid
addSkulls nskulls grid = newGrid
where
packColumn c = zipWith (\r x ((c,r),x)) [11,10..0]
$ (++ repeat Empty)
$ (++ replicate nskulls Skull)
$ takeWhile (/= Empty)
$ map (\r grid!(c,r)) [11,10..0]
newGrid = A.array ((0,0),(5,11)) $ concatMap packColumn [0..5]
simFall (Applicative m, MonadWriter (Sum Int) m) Grid Int m Grid
simFall grid = simDisappear newGrid
where
packColumn c = zipWith (\r x ((c,r),x)) [11,10..0]
$ (++ repeat Empty)
$ filter (/= Empty)
$ map (\r grid!(c,r)) [11,10..0]
newGrid = A.array ((0,0),(5,11)) $ concatMap packColumn [0..5]
simDisappear (Applicative m, MonadWriter (Sum Int) m) Grid Int m Grid
simDisappear grid stage = case null erased of
True pure grid
False do
tell . Sum $ 10 * blocksCleared * scale
simFall erasedGrid (stage + 1)
where
colorCells = filter (isColor . snd) $ A.assocs grid
skullCells = filter ((== Skull) . snd) $ A.assocs grid
groups = connectedGroups adjacentMatch colorCells
largeGroups = filter ((>= 4) . length) groups
erasedColors = concat largeGroups
erasedSkulls = filter (\(cr,_) any (adjacent cr . fst) erasedColors) skullCells
erased = erasedColors ++ erasedSkulls
erasedGrid = grid // map (second (const Empty)) erased
blocksCleared = length erasedColors
chainPower = if stage < 2 then 0 else 8 * 2^(stage-2)
uniqueColors = length . nub $ map snd erasedColors
colorBonus = if uniqueColors < 2 then 0 else 2^(uniqueColors-1)
groupBonus = sum (map (perGroupBonus . length) largeGroups)
perGroupBonus n = if n >= 11 then 8 else n - 4
scale = max 1 $ min 999 $ chainPower + colorBonus + groupBonus
isColor Cell Bool
isColor Empty = False
isColor Skull = False
isColor (Color _) = True
adjacent (Column,Row) (Column,Row) Bool
adjacent (c1,r1) (c2,r2) = (c1 == c2 && (r1 == r2 - 1 || r1 == r2 + 1)) ||
(r1 == r2 && (c1 == c2 - 1 || c1 == c2 + 1))
adjacentMatch ((Column, Row), Cell) ((Column, Row), Cell) Bool
adjacentMatch (cr1,x1) (cr2,x2) = x1 == x2 && adjacent cr1 cr2
connectedGroups (a a Bool) [a] [[a]]
connectedGroups p rem = case rem of
[] []
(x:rem')
let go fringe others = case fringe of
[] ([], others)
(y:fringe')
let (adj, notAdj) = partition (p y) others
in first (y:) $ go (fringe' ++ adj) notAdj
(conn, notConn) = go [x] rem'
in conn : connectedGroups p notConn
diffSeconds ClockTime ClockTime Double
diffSeconds (TOD s' p') (TOD s p) =
fromIntegral ((s' - s) * 1000000000000 + (p' - p)) / 1e12
-- From package "random", not available in CodinGame
class Monad m MonadRandom m where
getRandom Random a m a
getRandoms Random a m [a]
getRandomR Random a (a, a) m a
getRandomRs Random a (a, a) m [a]
instance MonadIO m MonadRandom m where
getRandom = liftIO randomIO
getRandoms = liftIO $ fmap randoms newStdGen
getRandomR = liftIO . randomRIO
getRandomRs r = liftIO $ fmap (randomRs r) newStdGen
shuffle MonadRandom m [a] m [a]
shuffle [] = return []
shuffle [x] = return [x]
shuffle xs = do
i getRandomR (0, length xs - 1)
let (as, x:bs) = splitAt i xs
xs' shuffle (as ++ bs)
return (x:xs')
-- Compute elements of the list to WHNF for `t` microseconds. After
-- `t` microseconds, abandon the calculation and terminate the list.
evaluateListWithTimeout :: Integer -> [a] -> IO [a]
evaluateListWithTimeout t xs = do
end <- (+) <$> getCPUTime <*> pure (1000000 * t)
flip fix xs $ \loop xs -> do
now <- getCPUTime
r <- timeout (fromIntegral $ max 0 (end - now) `div` 1000000) $
case xs of
[] -> pure []
(a:as) -> pure $! a `seq` (a:as)
case r of
Nothing -> pure []
Just [] -> pure []
Just (a:as) -> (a:) <$> loop as