diff --git a/Problem064.hs b/Problem064.hs new file mode 100644 index 0000000..6d506a4 --- /dev/null +++ b/Problem064.hs @@ -0,0 +1,31 @@ +-- For how many N <= 10000 does sqrt(N) have an odd period when written as a continued fraction? +import Euler + +-- Term r c === r*sqrt(n)+c +data Term = Term (Ratio Integer) (Ratio Integer) deriving (Eq, Show) + +-- 1/(r*sqrt(n) + c) +-- = (r*sqrt(n) - c) / (r^2*n - c^2) +-- = (r/(r^2*n - c^2))*sqrt(n) - c/(r^2*n - c^2) +termRecip :: Term -> Integer -> Term +termRecip (Term r c) n = Term (r / denom) (-c / denom) + where denom = r^2 * (fromIntegral n) - c^2 + +-- sqrt(n) = rem0 +-- = a0 + 1/rem1 +-- = a0 + 1/(a1 + 1/rem2) +-- = ... +-- = a0 + 1/(a1 + 1/(a2 + 1/(a3 + ...))) +-- +-- rem0 = sqrt(n), a0 = floor(rem0) +-- rem1 = 1/(rem0 - a0), a1 = floor(rem1) +-- rem2 = 1/(rem1 - a1), a2 = floor(rem2) +-- +toFraction :: Integer -> ([Integer], [Integer]) +toFraction n = let sqrtN = sqrt $ fromIntegral n in + if floor sqrtN ^ 2 == n then ([floor sqrtN], []) + else flip unfoldPeriodicState (Term 1 0) $ state $ \(Term r c) -> + let a = floor (fromRational r * sqrtN + fromRational c) :: Integer in + (Just a, termRecip (Term r (c - fromIntegral a)) n) + +main = print $ length $ filter (odd . length . snd . toFraction) [1..10000]