diff --git a/.gitignore b/.gitignore index 33c34b5..d6a60d0 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,5 @@ +.*.swp +*~ *.o *.hi Problem[0-9] diff --git a/Euler.hs b/Euler.hs new file mode 100644 index 0000000..21352a9 --- /dev/null +++ b/Euler.hs @@ -0,0 +1,51 @@ +{-# LANGUAGE BangPatterns, ScopedTypeVariables, FlexibleContexts #-} + +module Euler + ( whenM + , unlessM + , primesTo + , primes + , zipArraysWith + , RangeIx(..) + ) where + +import Control.Applicative +import Control.Monad +import Control.Monad.ST +import Control.Monad.Writer +import Data.Array.ST +import Data.Array.Unboxed +import Data.Word + +import qualified Control.Monad.ST.Lazy as LST + +whenM, unlessM :: Monad m => m Bool -> m () -> m () +whenM mc m = mc >>= (\c -> when c m) +unlessM mc m = mc >>= (\c -> unless c m) + +primesTo n = LST.runST $ do + isPrime <- LST.strictToLazyST (newArray (2, n) 1 :: ST s (STUArray s Integer Word8)) + let primesFrom m = if m > n then return [] else do + p <- LST.strictToLazyST (readArray isPrime m) + if p == 0 then primesFrom (m+1) else do + LST.strictToLazyST $ forM_ [2*m,3*m..n] $ \i -> writeArray isPrime i 0 + (m:) <$> primesFrom (m+1) + primesFrom 2 + +primes :: [Integer] +primes = let go (!p:xs) = p : go [ x | x <- xs, x `mod` p /= 0 ] in go [2..] + +class Ix a => RangeIx a where + intersectBounds :: (a, a) -> (a, a) -> (a, a) + +instance RangeIx Int where + intersectBounds (al, au) (bl, bu) = (max al bl, min au bu) + +instance (RangeIx a, RangeIx b) => RangeIx (a, b) where + intersectBounds ((al,bl),(au,bu)) ((cl,dl),(cu,du)) = + ((max al cl, max bl dl), (min au cu, min bu du)) + +zipArraysWith :: (IArray arrA a, IArray arrB b, IArray arrC c, RangeIx i) + => (a -> b -> c) -> arrA i a -> arrB i b -> arrC i c +zipArraysWith f as bs = array newRange $ [ (i, f (as!i) (bs!i)) | i <- range newRange ] + where newRange = intersectBounds (bounds as) (bounds bs) diff --git a/Problem10.hs b/Problem10.hs new file mode 100644 index 0000000..1258d5d --- /dev/null +++ b/Problem10.hs @@ -0,0 +1,4 @@ +-- Find the sum of all the primes below two million. +import Euler + +main = print $ sum $ primesTo 1999999 diff --git a/Problem11.hs b/Problem11.hs new file mode 100644 index 0000000..61ff366 --- /dev/null +++ b/Problem11.hs @@ -0,0 +1,47 @@ +{-# LANGUAGE FlexibleInstances, UndecidableInstances #-} +import Data.Array.Unboxed +import Euler + +-- What is the greatest product of four adjacent numbers in the same direction +-- (up, down, left, right, or diagonally) in the 20×20 grid? +-- +grid :: UArray (Int, Int) Int +grid = listArray ((1,1),(20,20)) $ + [ 08, 02, 22, 97, 38, 15, 00, 40, 00, 75, 04, 05, 07, 78, 52, 12, 50, 77, 91, 08 + , 49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 04, 56, 62, 00 + , 81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 03, 49, 13, 36, 65 + , 52, 70, 95, 23, 04, 60, 11, 42, 69, 24, 68, 56, 01, 32, 56, 71, 37, 02, 36, 91 + , 22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80 + , 24, 47, 32, 60, 99, 03, 45, 02, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50 + , 32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70 + , 67, 26, 20, 68, 02, 62, 12, 20, 95, 63, 94, 39, 63, 08, 40, 91, 66, 49, 94, 21 + , 24, 55, 58, 05, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72 + , 21, 36, 23, 09, 75, 00, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95 + , 78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 03, 80, 04, 62, 16, 14, 09, 53, 56, 92 + , 16, 39, 05, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57 + , 86, 56, 00, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58 + , 19, 80, 81, 68, 05, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 04, 89, 55, 40 + , 04, 52, 08, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66 + , 88, 36, 68, 87, 57, 62, 20, 72, 03, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69 + , 04, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 08, 46, 29, 32, 40, 62, 76, 36 + , 20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 04, 36, 16 + , 20, 73, 35, 29, 78, 31, 90, 01, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 05, 54 + , 01, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 01, 89, 19, 67, 48 + ] + +times :: (IArray a e, RangeIx i, Num e) => a i e -> a i e -> a i e +a `times` b = zipArraysWith (*) a b +infixl 7 `times` + +across n = ixmap ((1,1),( 20 ,20-n)) (\(a,b) -> ( a ,b+n)) grid +down n = ixmap ((1,1),(20-n, 20 )) (\(a,b) -> (a+n, b )) grid +diag1 n = ixmap ((1,1),(20-n,20-n)) (\(a,b) -> (a+n,b+n)) grid +diag2 n = ixmap ((1,1+n),(20-n,20)) (\(a,b) -> (a+n,b-n)) grid + +acrossProducts = grid `times` across 1 `times` across 2 `times` across 3 +downProducts = grid `times` down 1 `times` down 2 `times` down 3 +diagProducts1 = grid `times` diag1 1 `times` diag1 2 `times` diag1 3 +diagProducts2 = grid `times` diag2 1 `times` diag2 2 `times` diag2 3 + +main = print $ maximum $ concatMap elems $ + [acrossProducts, downProducts, diagProducts1, diagProducts2] diff --git a/Problem12.hs b/Problem12.hs new file mode 100644 index 0000000..a8d49a5 --- /dev/null +++ b/Problem12.hs @@ -0,0 +1,8 @@ +-- The sequence of triangle numbers is generated by adding the natural numbers. +-- So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. ... +-- What is the value of the first triangle number to have over five hundred divisors? +import Data.List + +triangles = scanl1 (+) [1..] :: [Int] +divisors n = concat [ [m, q] | m <- takeWhile (\x -> x^2 <= n) [1..], let (q, r) = n `divMod` m, r == 0 ] +main = print $ head $ [ n | n <- triangles, length (divisors n) > 500 ] diff --git a/Problem3.hs b/Problem3.hs index 88e810f..ea62c65 100644 --- a/Problem3.hs +++ b/Problem3.hs @@ -1,10 +1,9 @@ -- What is the largest prime factor of the number 600851475143 ? -n `divides` m = m `mod` n == 0 -primes = go [2..] where go (p:ps) = p : go (filter (\n -> not (p `divides` n)) ps) +import Euler -factors n = go primes n - where go (p:ps) n | n < p = [] - | p `divides` n = p : go (p:ps) (n `div` p) - | otherwise = go ps n +factors n = go (primes ()) n + where go (p:ps) n | n < p = [] + | n `mod` p == 0 = p : go (p:ps) (n `div` p) + | otherwise = go ps n main = print $ last $ factors 600851475143 diff --git a/Problem7.hs b/Problem7.hs index 76e9d3a..e283efa 100644 --- a/Problem7.hs +++ b/Problem7.hs @@ -1,4 +1,3 @@ -- What is the 10 001st prime number? -primes :: [Int] -primes = let go (p:ps) = p : go [ n | n <- ps, n `mod` p /= 0 ] in go [2..] -main = print $ primes !! 10000 +import Euler +main = print $ primesTo 1000000 !! 10000 diff --git a/Problem9.hs b/Problem9.hs new file mode 100644 index 0000000..302bd03 --- /dev/null +++ b/Problem9.hs @@ -0,0 +1,14 @@ +-- A Pythagorean triplet is a set of three natural numbers, a < b < c, for which, +-- +-- a^2 + b^2 = c^2 +-- +-- For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2. +-- +-- There exists exactly one Pythagorean triplet for which a + b + c = 1000. +-- Find the product abc. + +main = print $ head [ a*b*c | a <- [1..1000] + , b <- [a+1..1000-a] + , let c = 1000 - (a + b) + , a^2 + b^2 == c^2 + ]