-- For how many N <= 10000 does sqrt(N) have an odd period when written as a continued fraction? import Euler -- Term r c === r*sqrt(n)+c data Term = Term (Ratio Integer) (Ratio Integer) deriving (Eq, Show) -- 1/(r*sqrt(n) + c) -- = (r*sqrt(n) - c) / (r^2*n - c^2) -- = (r/(r^2*n - c^2))*sqrt(n) - c/(r^2*n - c^2) termRecip :: Term -> Integer -> Term termRecip (Term r c) n = Term (r / denom) (-c / denom) where denom = r^2 * (fromIntegral n) - c^2 -- sqrt(n) = rem0 -- = a0 + 1/rem1 -- = a0 + 1/(a1 + 1/rem2) -- = ... -- = a0 + 1/(a1 + 1/(a2 + 1/(a3 + ...))) -- -- rem0 = sqrt(n), a0 = floor(rem0) -- rem1 = 1/(rem0 - a0), a1 = floor(rem1) -- rem2 = 1/(rem1 - a1), a2 = floor(rem2) -- toFraction :: Integer -> ([Integer], [Integer]) toFraction n = let sqrtN = sqrt $ fromIntegral n in if floor sqrtN ^ 2 == n then ([floor sqrtN], []) else flip unfoldPeriodicState (Term 1 0) $ state $ \(Term r c) -> let a = floor (fromRational r * sqrtN + fromRational c) :: Integer in (Just a, termRecip (Term r (c - fromIntegral a)) n) main = print $ length $ filter (odd . length . snd . toFraction) [1..10000]