125 lines
3.9 KiB
Haskell
125 lines
3.9 KiB
Haskell
{-# LANGUAGE BangPatterns, ScopedTypeVariables, FlexibleContexts, StandaloneDeriving #-}
|
|
|
|
module Euler
|
|
( Digit
|
|
, Decimal
|
|
, integerPart
|
|
, prefixDigits
|
|
, repeatingDigits
|
|
, whenM
|
|
, unlessM
|
|
, primesTo
|
|
, primes
|
|
, zipArraysWith
|
|
, RangeIx(..)
|
|
, divisors
|
|
, properDivisors
|
|
, toDecimal
|
|
, fromDecimal
|
|
, toDigits
|
|
, fromDigits
|
|
, module Control.Applicative
|
|
, module Control.Arrow
|
|
, module Control.Monad
|
|
, module Data.Function
|
|
, module Data.List
|
|
, module Data.Ratio
|
|
, module Data.Tuple
|
|
, module Data.Word
|
|
) where
|
|
|
|
import Control.Applicative
|
|
import Control.Arrow
|
|
import Control.Monad
|
|
import Control.Monad.ST
|
|
import Control.Monad.Writer
|
|
import Data.Array.ST
|
|
import Data.Array.Unboxed
|
|
import Data.Function
|
|
import Data.List
|
|
import Data.Ratio
|
|
import Data.Tuple
|
|
import Data.Word
|
|
|
|
import qualified Control.Monad.ST.Lazy as LST
|
|
|
|
type Digit = Word8
|
|
data Decimal = Decimal { integerPart :: Integer
|
|
, prefixDigits :: [Digit]
|
|
, repeatingDigits :: [Digit]
|
|
}
|
|
|
|
whenM, unlessM :: Monad m => m Bool -> m () -> m ()
|
|
whenM mc m = mc >>= (\c -> when c m)
|
|
unlessM mc m = mc >>= (\c -> unless c m)
|
|
|
|
primesTo n = LST.runST $ do
|
|
isPrime <- LST.strictToLazyST (newArray (2, n) 1 :: ST s (STUArray s Integer Word8))
|
|
let primesFrom m = if m > n then return [] else do
|
|
p <- LST.strictToLazyST (readArray isPrime m)
|
|
if p == 0 then primesFrom (m+1) else do
|
|
LST.strictToLazyST $ forM_ [2*m,3*m..n] $ \i -> writeArray isPrime i 0
|
|
(m:) <$> primesFrom (m+1)
|
|
primesFrom 2
|
|
|
|
primes :: [Integer]
|
|
primes = let go (!p:xs) = p : go [ x | x <- xs, x `mod` p /= 0 ] in go [2..]
|
|
|
|
class Ix a => RangeIx a where
|
|
intersectBounds :: (a, a) -> (a, a) -> (a, a)
|
|
|
|
instance RangeIx Int where
|
|
intersectBounds (al, au) (bl, bu) = (max al bl, min au bu)
|
|
|
|
instance (RangeIx a, RangeIx b) => RangeIx (a, b) where
|
|
intersectBounds ((al,bl),(au,bu)) ((cl,dl),(cu,du)) =
|
|
((max al cl, max bl dl), (min au cu, min bu du))
|
|
|
|
zipArraysWith :: (IArray arrA a, IArray arrB b, IArray arrC c, RangeIx i)
|
|
=> (a -> b -> c) -> arrA i a -> arrB i b -> arrC i c
|
|
zipArraysWith f as bs = array newRange $ [ (i, f (as!i) (bs!i)) | i <- range newRange ]
|
|
where newRange = intersectBounds (bounds as) (bounds bs)
|
|
|
|
divisors :: Integral a => a -> [a]
|
|
divisors n = nub $ concat [ [m, q] | m <- takeWhile (\x -> x^2 <= n) [1..], let (q, r) = n `divMod` m, r == 0 ]
|
|
|
|
properDivisors :: Integral a => a -> [a]
|
|
properDivisors n | n < 1 = []
|
|
properDivisors n = nub $ 1 : concat [ [m, q] | m <- takeWhile (\x -> x^2 <= n) [2..], let (q, r) = n `divMod` m, r == 0 ]
|
|
|
|
toDecimal :: Rational -> Decimal
|
|
toDecimal rat = Decimal q ps rs
|
|
where
|
|
(n, m) = (numerator rat, denominator rat)
|
|
(q, r) = n `divMod` m
|
|
(ps, rs) = toDecimal' r m
|
|
|
|
toDecimal' :: Integer -> Integer -> ([Digit], [Digit])
|
|
toDecimal' n m = first (map fst) $ second (map fst) $ collect [] xs
|
|
where
|
|
xs = [ first fromInteger ((10*x) `divMod` m)
|
|
| x <- takeWhile (/= 0) $ (n:) $ map snd xs ]
|
|
collect ps [] = (ps, [])
|
|
collect ps (x:xs) = if x `elem` ps then break (== x) ps else collect (ps ++ [x]) xs
|
|
|
|
fromDecimal :: Decimal -> Rational
|
|
fromDecimal (Decimal n ps rs) = (n % 1) + (p + r) * (1 % 10 ^ length ps)
|
|
where (p, r) = (fromDigits ps % 1, fromDigits rs % (10 ^ length rs - 1))
|
|
|
|
deriving instance Eq Decimal
|
|
deriving instance Ord Decimal
|
|
|
|
instance Show Decimal where
|
|
show (Decimal n ps rs)
|
|
| null (ps ++ rs) = show n
|
|
| null rs = show n ++ "." ++ concat (map show ps)
|
|
| otherwise = show n ++ "." ++ concat (map show ps)
|
|
++ "(" ++ concat (map show rs) ++ ")"
|
|
|
|
toDigits :: (Integral a, Integral b) => a -> [b]
|
|
toDigits = reverse . unfoldr (\x ->
|
|
if x == 0 then Nothing else Just (first fromIntegral $ swap (x `divMod` 10)))
|
|
|
|
fromDigits :: (Integral a, Integral b) => [a] -> b
|
|
fromDigits = foldl' (\a b -> 10 * a + fromIntegral b) 0
|