91 lines
2.9 KiB
Haskell
91 lines
2.9 KiB
Haskell
{-# LANGUAGE BangPatterns, ScopedTypeVariables, FlexibleContexts #-}
|
|
|
|
module Euler
|
|
( Digit
|
|
, Decimal(..)
|
|
, whenM
|
|
, unlessM
|
|
, primesTo
|
|
, primes
|
|
, zipArraysWith
|
|
, RangeIx(..)
|
|
, digitsOf
|
|
, divisors
|
|
, properDivisors
|
|
, toDecimal
|
|
) where
|
|
|
|
import Control.Applicative
|
|
import Control.Arrow
|
|
import Control.Monad
|
|
import Control.Monad.ST
|
|
import Control.Monad.Writer
|
|
import Data.Array.ST
|
|
import Data.Array.Unboxed
|
|
import Data.Function
|
|
import Data.List
|
|
import Data.Word
|
|
|
|
import qualified Control.Monad.ST.Lazy as LST
|
|
|
|
type Digit = Word8
|
|
data Decimal = Decimal { integerPart :: Integer
|
|
, prefixDigits :: [Digit]
|
|
, repeatingDigits :: [Digit]
|
|
} deriving (Eq,Ord,Show)
|
|
|
|
whenM, unlessM :: Monad m => m Bool -> m () -> m ()
|
|
whenM mc m = mc >>= (\c -> when c m)
|
|
unlessM mc m = mc >>= (\c -> unless c m)
|
|
|
|
primesTo n = LST.runST $ do
|
|
isPrime <- LST.strictToLazyST (newArray (2, n) 1 :: ST s (STUArray s Integer Word8))
|
|
let primesFrom m = if m > n then return [] else do
|
|
p <- LST.strictToLazyST (readArray isPrime m)
|
|
if p == 0 then primesFrom (m+1) else do
|
|
LST.strictToLazyST $ forM_ [2*m,3*m..n] $ \i -> writeArray isPrime i 0
|
|
(m:) <$> primesFrom (m+1)
|
|
primesFrom 2
|
|
|
|
primes :: [Integer]
|
|
primes = let go (!p:xs) = p : go [ x | x <- xs, x `mod` p /= 0 ] in go [2..]
|
|
|
|
class Ix a => RangeIx a where
|
|
intersectBounds :: (a, a) -> (a, a) -> (a, a)
|
|
|
|
instance RangeIx Int where
|
|
intersectBounds (al, au) (bl, bu) = (max al bl, min au bu)
|
|
|
|
instance (RangeIx a, RangeIx b) => RangeIx (a, b) where
|
|
intersectBounds ((al,bl),(au,bu)) ((cl,dl),(cu,du)) =
|
|
((max al cl, max bl dl), (min au cu, min bu du))
|
|
|
|
zipArraysWith :: (IArray arrA a, IArray arrB b, IArray arrC c, RangeIx i)
|
|
=> (a -> b -> c) -> arrA i a -> arrB i b -> arrC i c
|
|
zipArraysWith f as bs = array newRange $ [ (i, f (as!i) (bs!i)) | i <- range newRange ]
|
|
where newRange = intersectBounds (bounds as) (bounds bs)
|
|
|
|
digitsOf :: (Read a, Show a, Integral a) => a -> [a]
|
|
digitsOf = map (read . (:[])) . show
|
|
|
|
divisors :: Integral a => a -> [a]
|
|
divisors n = nub $ concat [ [m, q] | m <- takeWhile (\x -> x^2 <= n) [1..], let (q, r) = n `divMod` m, r == 0 ]
|
|
|
|
properDivisors :: Integral a => a -> [a]
|
|
properDivisors n | n < 1 = []
|
|
properDivisors n = nub $ 1 : concat [ [m, q] | m <- takeWhile (\x -> x^2 <= n) [2..], let (q, r) = n `divMod` m, r == 0 ]
|
|
|
|
toDecimal :: Integer -> Integer -> Decimal
|
|
toDecimal n m = Decimal q ps rs
|
|
where
|
|
(q,r) = n `divMod` m
|
|
(ps,rs) = toDecimal' r m
|
|
|
|
toDecimal' :: Integer -> Integer -> ([Digit], [Digit])
|
|
toDecimal' n m = first (map fst) $ second (map fst) $ collect [] xs
|
|
where
|
|
xs = [ first fromInteger ((10*x) `divMod` m)
|
|
| x <- takeWhile (/= 0) $ (n:) $ map snd xs ]
|
|
collect ps [] = (ps, [])
|
|
collect ps (x:xs) = if x `elem` ps then break (== x) ps else collect (ps ++ [x]) xs
|