Fix center value of kernel; refactor; add high-pass, band-reject, and band-pass filters.
This commit is contained in:
parent
703e4b2531
commit
31e73c0e56
100
LowPass.hs
100
LowPass.hs
|
|
@ -12,32 +12,44 @@ import Numeric.GSL.Fourier as LA
|
|||
|
||||
import Control.Applicative
|
||||
import Data.Complex
|
||||
import System.IO
|
||||
import System.Random
|
||||
import System.Time
|
||||
import Text.Printf
|
||||
|
||||
sample_rate, cutoff :: Double
|
||||
sample_rate = 10000 {-Hz-}
|
||||
cutoff = 1000 {-Hz-}
|
||||
|
||||
kernel_size :: Int
|
||||
kernel_size = 101
|
||||
|
||||
lowPassKernel :: Vector Double
|
||||
lowPassKernel = raw / V.singleton sum
|
||||
lowPassKernel :: Double -> Double -> Int -> Vector Double
|
||||
lowPassKernel sr fc ksize = raw / V.singleton sum
|
||||
where
|
||||
n = V.enumFromN 0 kernel_size
|
||||
t = (n - fromIntegral (kernel_size `div` 2)) / V.singleton sample_rate
|
||||
n = V.enumFromN 0 ksize
|
||||
t = (n - fromIntegral (ksize `div` 2)) / V.singleton sr
|
||||
-- sinc function; replace division by zero with limit when t=0
|
||||
sinc' = sin (V.singleton (2*pi*cutoff) * t) / (V.singleton pi * t)
|
||||
sinc = sinc' V.// [(kernel_size `div` 2, 2 * pi * cutoff / sample_rate)]
|
||||
sinc' = sin (V.singleton (2*pi*fc) * t) / (V.singleton pi * t)
|
||||
sinc = sinc' V.// [(ksize `div` 2, 2 * fc)]
|
||||
-- Hamming window function
|
||||
kmax = fromIntegral (kernel_size - 1)
|
||||
kmax = fromIntegral (ksize - 1)
|
||||
hamm = 0.54 - 0.46 * cos (V.singleton (2 * pi / kmax) * n)
|
||||
-- Normalize the result
|
||||
raw = sinc * hamm
|
||||
sum = sumElements raw
|
||||
|
||||
invertSpectrum :: Vector Double -> Vector Double
|
||||
invertSpectrum kernel = midVal `seq` (negate kernel V.// [(mid, 1 - midVal)])
|
||||
where
|
||||
mid = (dim kernel) `div` 2
|
||||
midVal = kernel @> mid
|
||||
|
||||
highPassKernel :: Double -> Double -> Int -> Vector Double
|
||||
highPassKernel sr fc ksize =
|
||||
invertSpectrum $ lowPassKernel sr fc ksize
|
||||
|
||||
bandRejectKernel :: Double -> (Double, Double) -> Int -> Vector Double
|
||||
bandRejectKernel sr (lfc, hfc) ksize =
|
||||
lowPassKernel sr lfc ksize + highPassKernel sr hfc ksize
|
||||
|
||||
bandPassKernel :: Double -> (Double, Double) -> Int -> Vector Double
|
||||
bandPassKernel sr (lfc, hfc) ksize =
|
||||
invertSpectrum $ bandRejectKernel sr (lfc, hfc) ksize
|
||||
|
||||
-- convolution = integral(kernel(t-tau)*input(tau),tau)
|
||||
-- t is output vector index (j); products and summation are done with dot product (<.>)
|
||||
convolve :: Vector Double -> Vector Double -> Vector Double
|
||||
|
|
@ -48,18 +60,20 @@ convolve kernel input = V.generate osize $ \j -> rkernel <.> V.slice j ksize inp
|
|||
osize = isize - ksize
|
||||
rkernel = V.reverse kernel
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
let isize = 2000000
|
||||
seed <- randomIO
|
||||
(input, inputTime) <- time $ return $ LA.randomVector seed Gaussian isize
|
||||
(_, kernelTime) <- time $ return lowPassKernel
|
||||
(result, resultTime) <- time $ return $ convolve lowPassKernel input
|
||||
V.mapM_ (printf "%10.6f\n") $ V.slice 0 50 result
|
||||
--V.mapM_ (printf "%10.6f\n") $ V.map magnitude $ LA.fft $ V.map (:+0) result
|
||||
printf "Input Time: %8.6f seconds\n" $ inputTime
|
||||
printf "Kernel Time: %8.6f seconds\n" $ kernelTime
|
||||
printf "Result Time: %8.6f seconds\n" $ resultTime
|
||||
decimate :: Int -> Vector Double -> Vector Double
|
||||
decimate osize vec =
|
||||
V.generate osize $ \j ->
|
||||
(sumElements $ V.slice (j * ssize) ssize vec) / fromIntegral ssize
|
||||
where
|
||||
vsize = dim vec
|
||||
ssize = vsize `div` osize
|
||||
|
||||
diffClockTimesSec :: ClockTime -> ClockTime -> Double
|
||||
diffClockTimesSec a b = sec + picosec / 1.0e12
|
||||
where
|
||||
diff = diffClockTimes a b
|
||||
sec = fromIntegral $ tdSec diff
|
||||
picosec = fromIntegral $ tdPicosec diff
|
||||
|
||||
time :: IO a -> IO (a, Double)
|
||||
time f = do
|
||||
|
|
@ -67,10 +81,30 @@ time f = do
|
|||
x <- f
|
||||
end <- x `seq` getClockTime
|
||||
return (x, diffClockTimesSec end start)
|
||||
|
||||
diffClockTimesSec :: ClockTime -> ClockTime -> Double
|
||||
diffClockTimesSec a b = sec + picosec / 1.0e12
|
||||
where
|
||||
diff = diffClockTimes a b
|
||||
sec = fromIntegral $ tdSec diff
|
||||
picosec = fromIntegral $ tdPicosec diff
|
||||
|
||||
main :: IO ()
|
||||
main = do
|
||||
let sample_rate = 10000 {-Hz-} :: Double
|
||||
let cutoff = 1000 {-Hz-} :: Double
|
||||
|
||||
let input_size = 1000000 :: Int
|
||||
let kernel_size = 201 :: Int
|
||||
|
||||
seed <- randomIO
|
||||
|
||||
(input, inputTime) <- time $ return $ LA.randomVector seed Gaussian input_size
|
||||
(kernel, kernelTime) <- time $ return $ lowPassKernel sample_rate cutoff kernel_size
|
||||
(result, resultTime) <- time $ return $ convolve kernel input
|
||||
|
||||
--V.mapM_ (printf "%10.6f\n") kernel
|
||||
|
||||
--let fft_result = V.map magnitude $ LA.fft $ V.map (:+0) result
|
||||
--V.mapM_ (printf "%10.6f\n") . decimate 500 . V.take (dim fft_result `div` 2) $ fft_result
|
||||
|
||||
V.mapM_ (printf "%10.6f\n") . V.slice 0 50 $ result
|
||||
|
||||
hFlush stdout
|
||||
|
||||
hPutStrLn stderr $ printf "Input Time: %8.6f seconds" inputTime
|
||||
hPutStrLn stderr $ printf "Kernel Time: %8.6f seconds" kernelTime
|
||||
hPutStrLn stderr $ printf "Result Time: %8.6f seconds" resultTime
|
||||
|
|
|
|||
Loading…
Reference in New Issue