hmatrix-dsp/LowPass.hs

77 lines
2.5 KiB
Haskell

{-# LANGUAGE BangPatterns #-}
module Main (main) where
import Prelude as P
import Control.Monad as M
import Data.List as L
import Data.Vector.Storable as V
import Data.Vector.Storable.Mutable as MV
import Numeric.LinearAlgebra as LA
import Numeric.GSL.Fourier as LA
import Control.Applicative
import Data.Complex
import System.Random
import System.Time
import Text.Printf
sample_rate, cutoff :: Double
sample_rate = 10000 {-Hz-}
cutoff = 1000 {-Hz-}
kernel_size :: Int
kernel_size = 101
lowPassKernel :: Vector Double
lowPassKernel = raw / V.singleton sum
where
n = V.enumFromN 0 kernel_size
t = (n - fromIntegral (kernel_size `div` 2)) / V.singleton sample_rate
-- sinc function; replace division by zero with limit when t=0
sinc' = sin (V.singleton (2*pi*cutoff) * t) / (V.singleton pi * t)
sinc = sinc' V.// [(kernel_size `div` 2, 2 * pi * cutoff / sample_rate)]
-- Hamming window function
kmax = fromIntegral (kernel_size - 1)
hamm = 0.54 - 0.46 * cos (V.singleton (2 * pi / kmax) * n)
-- Normalize the result
raw = sinc * hamm
sum = sumElements raw
-- convolution = integral(kernel(t-tau)*input(tau),tau)
-- t is output vector index (j); products and summation are done with dot product (<.>)
convolve :: Vector Double -> Vector Double -> Vector Double
convolve kernel input = V.generate osize $ \j -> rkernel <.> V.slice j ksize input
where
ksize = dim rkernel
isize = dim input
osize = isize - ksize
rkernel = V.reverse kernel
main :: IO ()
main = do
let isize = 2000000
seed <- randomIO
(input, inputTime) <- time $ return $ LA.randomVector seed Gaussian isize
(_, kernelTime) <- time $ return lowPassKernel
(result, resultTime) <- time $ return $ convolve lowPassKernel input
V.mapM_ (printf "%10.6f\n") $ V.slice 0 50 result
--V.mapM_ (printf "%10.6f\n") $ V.map magnitude $ LA.fft $ V.map (:+0) result
printf "Input Time: %8.6f seconds\n" $ inputTime
printf "Kernel Time: %8.6f seconds\n" $ kernelTime
printf "Result Time: %8.6f seconds\n" $ resultTime
time :: IO a -> IO (a, Double)
time f = do
start <- getClockTime
x <- f
end <- x `seq` getClockTime
return (x, diffClockTimesSec end start)
diffClockTimesSec :: ClockTime -> ClockTime -> Double
diffClockTimesSec a b = sec + picosec / 1.0e12
where
diff = diffClockTimes a b
sec = fromIntegral $ tdSec diff
picosec = fromIntegral $ tdPicosec diff