Implement bytecode, other than floating-point operations.

This commit is contained in:
Jesse D. McDonald 2009-11-11 00:25:20 -06:00
parent d1dcb77503
commit 61e0583932
1 changed files with 374 additions and 52 deletions

410
interp.c
View File

@ -1,6 +1,7 @@
#include <inttypes.h> #include <inttypes.h>
#include <stdbool.h> #include <stdbool.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h>
#include "builtin.h" #include "builtin.h"
#include "gc.h" #include "gc.h"
@ -9,6 +10,11 @@
#define _SLOT_VALUE(t,v,s) (_get_struct(v)->slots[t ## _SLOT_ ## s]) #define _SLOT_VALUE(t,v,s) (_get_struct(v)->slots[t ## _SLOT_ ## s])
#define _LAMBDA_SLOT(v,s) _SLOT_VALUE(LAMBDA, v, s) #define _LAMBDA_SLOT(v,s) _SLOT_VALUE(LAMBDA, v, s)
/* Shorthand for frequently-used fields */
#define ST1 (state->in1.value)
#define ST2 (state->in2.value)
#define ST3 (state->in3.value)
typedef struct interp_state typedef struct interp_state
{ {
gc_root_t lambda; gc_root_t lambda;
@ -16,6 +22,9 @@ typedef struct interp_state
gc_root_t argv; gc_root_t argv;
gc_root_t k; gc_root_t k;
gc_root_t ctx; gc_root_t ctx;
gc_root_t in1;
gc_root_t in2;
gc_root_t in3;
} interp_state_t; } interp_state_t;
/* Quick references to main builtins */ /* Quick references to main builtins */
@ -23,16 +32,39 @@ static gc_root_t structure_type_root;
static gc_root_t template_type_root; static gc_root_t template_type_root;
static gc_root_t lambda_type_root; static gc_root_t lambda_type_root;
/* Local helper routines */ /*
* Local helper routines
*/
static bool struct_is_a(value_t s, value_t type); static bool struct_is_a(value_t s, value_t type);
static value_t vector_ref(value_t v, fixnum_t idx);
static char byte_string_ref(value_t v, fixnum_t idx);
static value_t struct_ref(value_t v, fixnum_t idx);
static void vector_set(value_t v, fixnum_t idx, value_t newval);
static void byte_string_set(value_t v, fixnum_t idx, char newval);
static void struct_set(value_t v, fixnum_t idx, value_t newval);
static value_t make_lambda(interp_state_t *state, value_t templ);
static void translate_callable(interp_state_t *state); static void translate_callable(interp_state_t *state);
static void run_byte_code(interp_state_t *state); static void run_byte_code(interp_state_t *state);
static void perform_tail_call(interp_state_t *state); static void perform_tail_call(interp_state_t *state);
static value_t eval_expression(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2);
static value_t eval_unary_expression(interp_state_t *state, uint8_t subcode, uint8_t in);
static void run_statement(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2, uint32_t in3);
static value_t get_input(const interp_state_t *state, fixnum_t var); static value_t get_input(const interp_state_t *state, fixnum_t var);
static void set_output(const interp_state_t *state, fixnum_t var, value_t val); static void set_output(const interp_state_t *state, fixnum_t var, value_t val);
static void register_state(interp_state_t *state, value_t lambda, value_t argv); static void register_state(interp_state_t *state, value_t lambda, value_t argv);
static void unregister_state(interp_state_t *state); static void unregister_state(interp_state_t *state);
/**********************************************************/
void interpreter_init(void) void interpreter_init(void)
{ {
register_gc_root(&structure_type_root, lookup_builtin(BI_STRUCTURE)); register_gc_root(&structure_type_root, lookup_builtin(BI_STRUCTURE));
@ -90,10 +122,10 @@ value_t run_interpreter(value_t lambda, value_t argv)
return state.argv.value; return state.argv.value;
} }
/* TODO: Check for cycles (besides 'structure') and permit derivatives of 'structure'. */ /* TODO: Permit derivatives of 'structure'. */
static bool struct_is_a(value_t s, value_t type) static bool struct_is_a(value_t s, value_t type)
{ {
/* To prevent unbounded loops w/ cyclic 'parent' links. */ /* Detect unbounded loops w/ cyclic 'parent' links. */
int ttl = 256; int ttl = 256;
if (!is_struct(s)) if (!is_struct(s))
@ -114,6 +146,110 @@ static bool struct_is_a(value_t s, value_t type)
return true; return true;
} }
static value_t vector_ref(value_t v, fixnum_t idx)
{
vector_t *vec = get_vector(v);
if (idx < 0 || idx >= vec->size)
abort();
return vec->elements[idx];
}
static char byte_string_ref(value_t v, fixnum_t idx)
{
byte_string_t *str = get_byte_string(v);
if (idx < 0 || idx >= str->size)
abort();
return str->bytes[idx];
}
static value_t struct_ref(value_t v, fixnum_t idx)
{
struct_t *s = get_struct(v);
if (idx < 0 || idx >= s->nslots)
abort();
return s->slots[idx];
}
static void vector_set(value_t v, fixnum_t idx, value_t newval)
{
vector_t *vec = get_vector(v);
if (idx < 0 || idx >= vec->size)
abort();
vec->elements[idx] = newval;
}
static void byte_string_set(value_t v, fixnum_t idx, char newval)
{
byte_string_t *str = get_byte_string(v);
if (idx < 0 || idx >= str->size)
abort();
str->bytes[idx] = newval;
}
static void struct_set(value_t v, fixnum_t idx, value_t newval)
{
struct_t *s = get_struct(v);
if (idx < 0 || idx >= s->nslots)
abort();
s->slots[idx] = newval;
}
static value_t make_lambda(interp_state_t *state, value_t templ)
{
gc_root_t templ_root, lambda_root;
value_t lval;
struct_t *ls;
struct_t *ts;
vector_t *l_inst;
byte_string_t *t_inst;
register_gc_root(&templ_root, templ);
register_gc_root(&lambda_root, make_struct(lambda_type_root.value, LAMBDA_SLOTS));
/* Need to do this first, since it can call the garbage collector. */
_get_struct(lambda_root.value)->slots[LAMBDA_SLOT_INSTANCE_VARS] =
make_vector(get_vector(get_struct(templ_root.value)
->slots[TEMPLATE_SLOT_INSTANCE_VARS])
->size,
NIL);
ls = _get_struct(lambda_root.value);
ts = _get_struct(templ_root.value);
l_inst = _get_vector(ls->slots[LAMBDA_SLOT_INSTANCE_VARS]);
t_inst = get_byte_string(ts->slots[TEMPLATE_SLOT_INSTANCE_VARS]);
/* All but the instance variables are just shallow-copied. */
ls->slots[LAMBDA_SLOT_GLOBAL_VARS] = ts->slots[TEMPLATE_SLOT_GLOBAL_VARS];
ls->slots[LAMBDA_SLOT_FRAME_VARS] = ts->slots[TEMPLATE_SLOT_FRAME_VARS];
ls->slots[LAMBDA_SLOT_BYTE_CODE] = ts->slots[TEMPLATE_SLOT_BYTE_CODE];
ls->slots[LAMBDA_SLOT_TAIL_CALL] = ts->slots[TEMPLATE_SLOT_TAIL_CALL];
ls->slots[LAMBDA_SLOT_ARG_LIST] = ts->slots[TEMPLATE_SLOT_ARG_LIST];
ls->slots[LAMBDA_SLOT_CONTINUATION] = ts->slots[TEMPLATE_SLOT_CONTINUATION];
ls->slots[LAMBDA_SLOT_CONTEXT] = ts->slots[TEMPLATE_SLOT_CONTEXT];
for (size_t i = 0; i < t_inst->size; ++i)
{
l_inst->elements[i] = get_input(state, t_inst->bytes[i]);
}
unregister_gc_root(&templ_root);
unregister_gc_root(&lambda_root);
return lambda_root.value;
}
static void translate_callable(interp_state_t *state) static void translate_callable(interp_state_t *state)
{ {
while (!struct_is_a(state->lambda.value, lambda_type_root.value)) while (!struct_is_a(state->lambda.value, lambda_type_root.value))
@ -131,7 +267,33 @@ static void translate_callable(interp_state_t *state)
static void run_byte_code(interp_state_t *state) static void run_byte_code(interp_state_t *state)
{ {
/* TODO */ gc_root_t bc_root;
register_gc_root(&bc_root, _LAMBDA_SLOT(state->lambda.value, BYTE_CODE));
for (size_t offset = 0; (offset+3) < _get_byte_string(bc_root.value)->size; offset += 4)
{
uint8_t bytes[4];
memcpy(bytes, _get_byte_string(bc_root.value)->bytes + offset, 4);
switch (bytes[0])
{
case 0 ... 63: /* expression */
set_output(state, bytes[1], eval_expression(state, bytes[0], bytes[2], bytes[3]));
break;
case 64 ... 127: /* statement */
run_statement(state, bytes[0], bytes[1], bytes[2], bytes[3]);
break;
case 128 ... 255: /* conditional */
set_output(state, bytes[0],
get_input(state,
is_true(get_input(state, bytes[1])) ? bytes[2] : bytes[3]));
break;
}
}
unregister_gc_root(&bc_root);
} }
static void perform_tail_call(interp_state_t *state) static void perform_tail_call(interp_state_t *state)
@ -149,39 +311,170 @@ static void perform_tail_call(interp_state_t *state)
state->ctx.value = new_ctx; state->ctx.value = new_ctx;
} }
static value_t eval_expression(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2)
{
if (code == 0)
{
return eval_unary_expression(state, in1, in2);
}
ST1 = get_input(state, in1);
ST2 = get_input(state, in2);
switch (code)
{
case 0x01:
return cons(ST1, ST2);
case 0x02:
return make_vector(get_fixnum(ST1), ST2);
case 0x03:
return make_byte_string(get_fixnum(ST1), (char)get_fixnum(ST2));
case 0x04:
return vector_ref(ST1, get_fixnum(ST2));
case 0x05:
return make_fixnum(byte_string_ref(ST1, get_fixnum(ST2)));
case 0x06:
return struct_ref(ST1, get_fixnum(ST2));
case 0x07:
return ST1 == ST2;
case 0x08:
return make_fixnum(get_fixnum(ST1) + get_fixnum(ST2));
case 0x09:
return make_fixnum(get_fixnum(ST1) - get_fixnum(ST2));
case 0x0a:
return make_fixnum(get_fixnum(ST1) * get_fixnum(ST2));
case 0x0b:
return make_fixnum(get_fixnum(ST1) / get_fixnum(ST2));
case 0x0c:
return make_fixnum(get_fixnum(ST1) % get_fixnum(ST2));
case 0x0d:
return make_fixnum(get_fixnum(ST1) < get_fixnum(ST2));
case 0x0e:
return make_fixnum(get_fixnum(ST1) >= get_fixnum(ST2));
case 0x0f:
return make_fixnum(get_fixnum(ST1) & get_fixnum(ST2));
case 0x10:
return make_fixnum(get_fixnum(ST1) | get_fixnum(ST2));
case 0x11:
return make_fixnum(get_fixnum(ST1) ^ get_fixnum(ST2));
case 0x12:
return make_fixnum(get_fixnum(ST1) << get_fixnum(ST2));
case 0x13:
return make_fixnum(get_fixnum(ST1) >> get_fixnum(ST2));
case 0x14:
return make_fixnum((unsigned long)get_fixnum(ST1) >> get_fixnum(ST2));
case 0x15 ... 0x24:
return UNDEFINED;
default:
abort();
}
return UNDEFINED;
}
static value_t eval_unary_expression(interp_state_t *state, uint8_t subcode, uint8_t in)
{
if (subcode == 0)
{
abort();
}
ST1 = get_input(state, in);
switch (subcode)
{
case 0x01:
return ST1;
case 0x02:
return get_pair(ST1)->car;
case 0x03:
return get_pair(ST1)->cdr;
case 0x04:
return get_box(ST1)->value;
case 0x05:
return make_boolean(is_false(ST1));
case 0x06:
return make_boolean(is_nil(ST1));
case 0x07:
return make_boolean(is_pair(ST1));
case 0x08:
return make_boolean(is_box(ST1));
case 0x09:
return make_boolean(is_vector(ST1));
case 0x0a:
return make_boolean(is_byte_string(ST1));
case 0x0b:
return make_boolean(is_struct(ST1));
case 0x0c:
return make_boolean(is_fixnum(ST1));
case 0x0d:
//return make_boolean(is_float(ST1));
return FALSE_VALUE;
case 0x0e:
return make_box(ST1);
case 0x0f:
if (!struct_is_a(ST1, structure_type_root.value))
abort();
return make_struct(ST1, get_vector(_get_struct(ST1)->slots[STRUCTURE_SLOT_SLOTS])->size);
case 0x10:
//return make_float((float_t)get_fixnum(ST1));
return UNDEFINED;
case 0x11:
return make_lambda(state, ST1);
case 0x12:
return make_fixnum(~get_fixnum(ST1));
case 0x13:
return make_fixnum(-get_fixnum(ST1));
case 0x14:
//return make_float(-from_float(ST1));
return UNDEFINED;
case 0x20 ... 0x31:
case 0x40 ... 0x4e:
return UNDEFINED;
default:
abort();
}
}
static void run_statement(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2, uint32_t in3)
{
ST1 = get_input(state, in1);
ST2 = get_input(state, in2);
if (code >= 0x60)
{
ST3 = get_input(state, in3);
}
switch (code)
{
case 0x40:
get_box(ST1)->value = ST2;
break;
case 0x41:
get_pair(ST1)->car = ST2;
break;
case 0x42:
get_pair(ST1)->cdr = ST2;
break;
case 0x60:
vector_set(ST1, get_fixnum(ST2), ST3);
break;
case 0x61:
byte_string_set(ST1, get_fixnum(ST2), (char)get_fixnum(ST3));
break;
case 0x62:
struct_set(ST1, get_fixnum(ST2), ST3);
}
}
static value_t get_input(const interp_state_t *state, fixnum_t var) static value_t get_input(const interp_state_t *state, fixnum_t var)
{ {
if (var >= 256) switch (var)
abort();
else if (var == 255)
return state->ctx.value;
else if (var == 254)
return state->k.value;
else if (var == 253)
return state->argv.value;
else if (var >= 248)
abort(); /* reserved */
else if (var >= 128)
{ {
vector_t *vec = _get_vector(state->frame.value); case 0:
var -= 128; return NIL;
case 1 ... 63:
if (var >= vec->size)
abort();
return vec->elements[var];
}
else if (var >= 64)
{
vector_t *vec = get_vector(_LAMBDA_SLOT(state->lambda.value, INSTANCE_VARS));
var -= 64;
if (var >= vec->size)
abort();
return vec->elements[var];
}
else if (var >= 1)
{ {
vector_t *vec = get_vector(_LAMBDA_SLOT(state->lambda.value, GLOBAL_VARS)); vector_t *vec = get_vector(_LAMBDA_SLOT(state->lambda.value, GLOBAL_VARS));
var -= 1; var -= 1;
@ -191,25 +484,48 @@ static value_t get_input(const interp_state_t *state, fixnum_t var)
return vec->elements[var]; return vec->elements[var];
} }
else if (var == 0) case 64 ... 127:
return NIL; {
else vector_t *vec = get_vector(_LAMBDA_SLOT(state->lambda.value, INSTANCE_VARS));
var -= 64;
if (var >= vec->size)
abort(); abort();
return vec->elements[var];
}
case 128 ... 247:
{
/* Frame is allocated by interpreter, so we know it's a vector already. */
vector_t *vec = _get_vector(state->frame.value);
var -= 128;
if (var >= vec->size)
abort();
return vec->elements[var];
}
/* 248 ... 252 are reserved */
case 253:
return state->argv.value;
case 254:
return state->k.value;
case 255:
return state->ctx.value;
default:
abort();
}
} }
static void set_output(const interp_state_t *state, fixnum_t var, value_t val) static void set_output(const interp_state_t *state, fixnum_t var, value_t val)
{ {
vector_t *vec = _get_vector(state->frame.value); vector_t *vec = _get_vector(state->frame.value);
if (var < 128) /* Only frame variables can be output targets for bytecode instructions. */
if (var < 128 || var >= (128 + vec->size))
abort(); abort();
var -= 128; vec->elements[var-128] = val;
if (var >= vec->size)
abort();
vec->elements[var] = val;
} }
static void register_state(interp_state_t *state, value_t lambda, value_t argv) static void register_state(interp_state_t *state, value_t lambda, value_t argv)
@ -219,6 +535,9 @@ static void register_state(interp_state_t *state, value_t lambda, value_t argv)
register_gc_root(&state->argv, argv); register_gc_root(&state->argv, argv);
register_gc_root(&state->k, NIL); register_gc_root(&state->k, NIL);
register_gc_root(&state->ctx, NIL); register_gc_root(&state->ctx, NIL);
register_gc_root(&state->in1, NIL);
register_gc_root(&state->in2, NIL);
register_gc_root(&state->in3, NIL);
} }
static void unregister_state(interp_state_t *state) static void unregister_state(interp_state_t *state)
@ -228,6 +547,9 @@ static void unregister_state(interp_state_t *state)
unregister_gc_root(&state->argv); unregister_gc_root(&state->argv);
unregister_gc_root(&state->k); unregister_gc_root(&state->k);
unregister_gc_root(&state->ctx); unregister_gc_root(&state->ctx);
unregister_gc_root(&state->in1);
unregister_gc_root(&state->in2);
unregister_gc_root(&state->in3);
} }
/* vim:set sw=2 expandtab: */ /* vim:set sw=2 expandtab: */