#define _XOPEN_SOURCE 500 #define _REENTRANT 1 #define _SVID_SOURCE 1 /* Required for lgamma_r on Solaris */ #define __EXTENSIONS__ 1 #include #include #include #include #include #include #include "gc.h" #include "builtin.h" #include "interp.h" /* Ex: _SLOT_VALUE(STRUCTURE, v, NAME) */ #define _SLOT_VALUE(t,v,s) (_get_struct(v)->slots[t ## _SLOT_ ## s]) #define _LAMBDA_SLOT(v,s) _SLOT_VALUE(LAMBDA, v, s) /* Shorthand for frequently-used fields */ #define ST1 (state->in1.value) #define ST2 (state->in2.value) #define ST3 (state->in3.value) /* Quick references to main builtins */ static gc_root_t structure_type_root; static gc_root_t template_type_root; static gc_root_t lambda_type_root; /* * Local helper routines */ static bool struct_is_a(value_t s, value_t type); static value_t vector_ref(value_t v, fixnum_t idx); static char byte_string_ref(value_t v, fixnum_t idx); static value_t struct_ref(value_t v, fixnum_t idx); static void vector_set(value_t v, fixnum_t idx, value_t newval); static void byte_string_set(value_t v, fixnum_t idx, char newval); static void struct_set(value_t v, fixnum_t idx, value_t newval); static value_t make_lambda(interp_state_t *state, value_t templ); static void translate_callable(interp_state_t *state); static void run_byte_code(interp_state_t *state); static void perform_tail_call(interp_state_t *state); static value_t eval_expression(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2); static value_t eval_unary_expression(interp_state_t *state, uint8_t subcode, uint8_t in); static void run_statement(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2, uint32_t in3); static value_t get_input(const interp_state_t *state, fixnum_t var); static void set_output(const interp_state_t *state, fixnum_t var, value_t val); static void register_state(interp_state_t *state, value_t lambda, value_t argv); static void unregister_state(interp_state_t *state); /**********************************************************/ void interpreter_init(void) { register_gc_root(&structure_type_root, lookup_builtin(BI_STRUCTURE)); register_gc_root(&template_type_root, lookup_builtin(BI_TEMPLATE)); register_gc_root(&lambda_type_root, lookup_builtin(BI_LAMBDA)); } value_t run_interpreter(value_t lambda, value_t argv) { static bool run_finalizers = true; interp_state_t state; register_state(&state, lambda, argv); /* Keep going until something attempts to tail-call FALSE_VALUE, the original 'k', indicating completion. */ while (state.lambda.value != FALSE_VALUE) { /* 'lambda' may be a callable structure; if so, follow the 'callable' proxies and update argv. */ translate_callable(&state); /* * Now 'lambda' really is a lambda structure instance (or builtin). */ #if 0 fflush(stdout); fputs("LAMBDA: ", stderr); fprint_value(stderr, state.lambda.value); fputc('\n', stderr); fputs("ARGLIST: ", stderr); fprint_value(stderr, state.argv.value); fputc('\n', stderr); fputs("CONT'N: ", stderr); fprint_value(stderr, state.k.value); fputc('\n', stderr); fputs("CONTEXT: ", stderr); fprint_value(stderr, state.ctx.value); fputc('\n', stderr); fputc('\n', stderr); fflush(stderr); #endif if (is_builtin_fn(state.lambda.value)) { /* Builtin functions replace the byte-code and tail-call * steps; they also do not require frame variables. */ state.nframe = 0; _get_builtin_fn(state.lambda.value)(&state); } else { state.nframe = get_fixnum(_LAMBDA_SLOT(state.lambda.value, FRAME_VARS)); release_assert((0 <= state.nframe) && (state.nframe <= 120)); run_byte_code(&state); perform_tail_call(&state); } /* Clear (used) frame-variable slots so they can be GC'd. */ for (fixnum_t i = 0; i < state.nframe; ++i) _get_vector(state.frame.value)->elements[i] = UNDEFINED; /* Clear temporaries. */ state.in1.value = UNDEFINED; state.in2.value = UNDEFINED; state.in3.value = UNDEFINED; if (run_finalizers) { value_t v, f; get_next_finalizer(&v, &f); if (is_object(v)) { gc_root_t f_root; register_gc_root(&f_root, f); run_finalizers = false; /* Note that recursion is limited to a single level by the static variable. */ run_interpreter(f_root.value, cons(v, NIL)); run_finalizers = true; unregister_gc_root(&f_root); } } } unregister_state(&state); /* The arguments passed to continuation are the final return value. */ return state.argv.value; } /* TODO: Permit derivatives of 'structure', and improve detection of cycles. */ static bool struct_is_a(value_t s, value_t type) { /* Detect unbounded loops w/ cyclic 'parent' links. */ int ttl = 256; if (!is_struct(s)) return false; for (value_t t = _get_struct(s)->type; t != type; t = _SLOT_VALUE(STRUCTURE, t, SUPER), --ttl) { if (t == FALSE_VALUE) return false; release_assert(get_struct(t)->type == structure_type_root.value); release_assert(ttl > 0); } return true; } static value_t vector_ref(value_t v, fixnum_t idx) { vector_t *vec = get_vector(v); release_assert((idx >= 0) && (idx < vec->size)); return vec->elements[idx]; } static char byte_string_ref(value_t v, fixnum_t idx) { byte_string_t *str = get_byte_string(v); release_assert((idx >= 0) && (idx < str->size)); return str->bytes[idx]; } static value_t struct_ref(value_t v, fixnum_t idx) { struct_t *s = get_struct(v); release_assert((idx >= 0) && (idx < s->nslots)); return s->slots[idx]; } static void vector_set(value_t v, fixnum_t idx, value_t newval) { vector_t *vec = get_vector(v); release_assert((idx >= 0) && (idx < vec->size)); vec->elements[idx] = newval; } static void byte_string_set(value_t v, fixnum_t idx, char newval) { byte_string_t *str = get_byte_string(v); release_assert((idx >= 0) && (idx < str->size)); str->bytes[idx] = newval; } static void struct_set(value_t v, fixnum_t idx, value_t newval) { struct_t *s = get_struct(v); release_assert(struct_is_a(s->type, structure_type_root.value)); release_assert(_get_boolean(_SLOT_VALUE(STRUCTURE, s->type, MUTABLE))); release_assert((idx >= 0) && (idx < s->nslots)); s->slots[idx] = newval; } static value_t make_lambda(interp_state_t *state, value_t templ) { gc_root_t templ_root, lambda_root; struct_t *ls; struct_t *ts; vector_t *l_inst; byte_string_t *t_inst; value_t temp; /* If it's not a template object, just return as-is. */ if (!struct_is_a(templ, template_type_root.value)) return templ; register_gc_root(&templ_root, templ); register_gc_root(&lambda_root, make_struct(lambda_type_root.value, LAMBDA_SLOTS)); /* Need to do this first, since it can call the garbage collector. */ temp = make_vector(get_byte_string(get_struct(templ_root.value) ->slots[TEMPLATE_SLOT_INSTANCE_VARS])->size, UNDEFINED); _LAMBDA_SLOT(lambda_root.value, INSTANCE_VARS) = temp; ls = _get_struct(lambda_root.value); ts = _get_struct(templ_root.value); /* All but the instance variables are just shallow-copied. */ ls->slots[LAMBDA_SLOT_GLOBAL_VARS] = ts->slots[TEMPLATE_SLOT_GLOBAL_VARS]; ls->slots[LAMBDA_SLOT_FRAME_VARS] = ts->slots[TEMPLATE_SLOT_FRAME_VARS]; ls->slots[LAMBDA_SLOT_BYTE_CODE] = ts->slots[TEMPLATE_SLOT_BYTE_CODE]; ls->slots[LAMBDA_SLOT_TAIL_CALL] = ts->slots[TEMPLATE_SLOT_TAIL_CALL]; ls->slots[LAMBDA_SLOT_ARG_LIST] = ts->slots[TEMPLATE_SLOT_ARG_LIST]; ls->slots[LAMBDA_SLOT_CONTINUATION] = ts->slots[TEMPLATE_SLOT_CONTINUATION]; ls->slots[LAMBDA_SLOT_CONTEXT] = ts->slots[TEMPLATE_SLOT_CONTEXT]; l_inst = _get_vector(ls->slots[LAMBDA_SLOT_INSTANCE_VARS]); t_inst = get_byte_string(ts->slots[TEMPLATE_SLOT_INSTANCE_VARS]); for (size_t i = 0; i < t_inst->size; ++i) { l_inst->elements[i] = get_input(state, t_inst->bytes[i]); } unregister_gc_root(&templ_root); unregister_gc_root(&lambda_root); return lambda_root.value; } static void translate_callable(interp_state_t *state) { while (!is_builtin_fn(state->lambda.value) && !struct_is_a(state->lambda.value, lambda_type_root.value)) { /* If it's not a lambda, built-in function, or typed structure, then * it's not callable and I have no idea what to do with it. */ release_assert(struct_is_a(get_struct(state->lambda.value)->type, structure_type_root.value)); /* Prepend structure instance to argument list, per proxy protocol. */ state->argv.value = cons(state->lambda.value, state->argv.value); /* Follow link to next callable. */ state->lambda.value = _SLOT_VALUE(STRUCTURE, _get_struct(state->lambda.value)->type, CALLABLE); } } static void run_byte_code(interp_state_t *state) { gc_root_t bc_root; register_gc_root(&bc_root, _LAMBDA_SLOT(state->lambda.value, BYTE_CODE)); for (size_t offset = 0; (offset+3) < _get_byte_string(bc_root.value)->size; offset += 4) { uint8_t bytes[4]; memcpy(bytes, _get_byte_string(bc_root.value)->bytes + offset, 4); switch (bytes[0]) { case 0x00 ... 0x3f: /* expression */ set_output(state, bytes[1], eval_expression(state, bytes[0], bytes[2], bytes[3])); break; case 0x40 ... 0x7f: /* statement */ run_statement(state, bytes[0], bytes[1], bytes[2], bytes[3]); break; case 0x80 ... 0xff: /* conditional */ set_output(state, bytes[0], get_input(state, _get_boolean(get_input(state, bytes[1])) ? bytes[2] : bytes[3])); break; } } unregister_gc_root(&bc_root); } static void perform_tail_call(interp_state_t *state) { value_t new_lambda, new_argv, new_ctx, new_k; new_lambda = get_input(state, get_fixnum(_LAMBDA_SLOT(state->lambda.value, TAIL_CALL))); new_argv = get_input(state, get_fixnum(_LAMBDA_SLOT(state->lambda.value, ARG_LIST))); new_k = get_input(state, get_fixnum(_LAMBDA_SLOT(state->lambda.value, CONTINUATION))); new_ctx = get_input(state, get_fixnum(_LAMBDA_SLOT(state->lambda.value, CONTEXT))); state->lambda.value = new_lambda; state->argv.value = new_argv; state->k.value = new_k; state->ctx.value = new_ctx; } static value_t eval_expression(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2) { if (code != 0x00) { ST1 = get_input(state, in1); ST2 = get_input(state, in2); } switch (code) { case 0x00: return eval_unary_expression(state, in1, in2); case 0x01: return boolean_value(ST1 == ST2); case 0x02: return cons(ST1, ST2); case 0x03: return make_vector(get_fixnum(ST1), ST2); case 0x04: return make_byte_string(get_fixnum(ST1), (char)get_fixnum(ST2)); case 0x05: return vector_ref(ST1, get_fixnum(ST2)); case 0x06: return fixnum_value(byte_string_ref(ST1, get_fixnum(ST2))); case 0x07: return struct_ref(ST1, get_fixnum(ST2)); case 0x08: return fixnum_value(get_fixnum(ST1) + get_fixnum(ST2)); case 0x09: return fixnum_value(get_fixnum(ST1) - get_fixnum(ST2)); case 0x0a: return fixnum_value(get_fixnum(ST1) * get_fixnum(ST2)); case 0x0b: return fixnum_value(get_fixnum(ST1) / get_fixnum(ST2)); case 0x0c: return fixnum_value(get_fixnum(ST1) % get_fixnum(ST2)); case 0x0d: return boolean_value(get_fixnum(ST1) < get_fixnum(ST2)); case 0x0e: return boolean_value(get_fixnum(ST1) >= get_fixnum(ST2)); case 0x10: return fixnum_value(get_fixnum(ST1) & get_fixnum(ST2)); case 0x11: return fixnum_value(get_fixnum(ST1) | get_fixnum(ST2)); case 0x12: return fixnum_value(get_fixnum(ST1) ^ get_fixnum(ST2)); case 0x14: return fixnum_value(get_fixnum(ST1) << get_fixnum(ST2)); case 0x15: return fixnum_value(get_fixnum(ST1) >> get_fixnum(ST2)); case 0x16: return fixnum_value((unsigned long)get_fixnum(ST1) >> get_fixnum(ST2)); case 0x18: return make_float(get_float(ST1) + get_float(ST2)); case 0x19: return make_float(get_float(ST1) - get_float(ST2)); case 0x1a: return make_float(get_float(ST1) * get_float(ST2)); case 0x1b: return make_float(get_float(ST1) / get_float(ST2)); case 0x1c: return boolean_value(get_float(ST1) == get_float(ST2)); case 0x1d: return boolean_value(get_float(ST1) < get_float(ST2)); case 0x1e: return boolean_value(get_float(ST1) >= get_float(ST2)); case 0x20: return make_float(atan2(get_float(ST1), get_float(ST2))); case 0x21: return make_float(pow(get_float(ST1), get_float(ST2))); case 0x22: return make_float(ldexp(get_float(ST1), get_fixnum(ST2))); case 0x23: return make_float(fmod(get_float(ST1), get_float(ST2))); case 0x24: return make_float(hypot(get_float(ST1), get_float(ST2))); case 0x25: return make_float(jn(get_fixnum(ST1), get_float(ST2))); case 0x26: return make_float(yn(get_fixnum(ST1), get_float(ST2))); case 0x27: return make_float(nextafter(get_float(ST1), get_float(ST2))); case 0x28: return make_float(remainder(get_float(ST1), get_float(ST2))); case 0x29: return make_float(scalb(get_float(ST1), get_float(ST2))); default: release_assert(NOTREACHED("Invalid byte-code!")); } return UNDEFINED; } static value_t eval_unary_expression(interp_state_t *state, uint8_t subcode, uint8_t in) { release_assert(subcode != 0); ST1 = get_input(state, in); switch (subcode) { case 0x01: return ST1; case 0x02: return get_box(ST1)->value; case 0x03: return get_pair(ST1)->car; case 0x04: return get_pair(ST1)->cdr; case 0x08: return boolean_value(is_boolean(ST1)); case 0x09: return boolean_value(is_fixnum(ST1)); case 0x0a: return boolean_value(is_box(ST1)); case 0x0b: return boolean_value(is_pair(ST1)); case 0x0c: return boolean_value(is_vector(ST1)); case 0x0d: return boolean_value(is_byte_string(ST1)); case 0x0e: return boolean_value(is_struct(ST1)); case 0x0f: return boolean_value(is_float(ST1)); case 0x10: return boolean_value(is_builtin_fn(ST1)); case 0x18: return make_box(ST1); case 0x19: { vector_t *vec; release_assert(struct_is_a(ST1, structure_type_root.value)); vec = get_vector(_SLOT_VALUE(STRUCTURE, ST1, SLOTS)); return make_struct(ST1, vec->size); } case 0x1a: return make_float((native_float_t)get_fixnum(ST1)); case 0x1b: return make_lambda(state, ST1); case 0x20: return boolean_value(!_get_boolean(ST1)); case 0x21: return fixnum_value(~get_fixnum(ST1)); case 0x22: return fixnum_value(-get_fixnum(ST1)); case 0x23: return make_float(-get_float(ST1)); case 0x28: return fixnum_value(get_vector(ST1)->size); case 0x29: return fixnum_value(get_byte_string(ST1)->size); case 0x2a: return fixnum_value(get_struct(ST1)->nslots); case 0x2b: return get_struct(ST1)->type; case 0x30: return make_float(acos(get_float(ST1))); case 0x31: return make_float(asin(get_float(ST1))); case 0x32: return make_float(atan(get_float(ST1))); case 0x33: return make_float(cos(get_float(ST1))); case 0x34: return make_float(sin(get_float(ST1))); case 0x35: return make_float(tan(get_float(ST1))); case 0x36: return make_float(cosh(get_float(ST1))); case 0x37: return make_float(sinh(get_float(ST1))); case 0x38: return make_float(tanh(get_float(ST1))); case 0x39: return make_float(exp(get_float(ST1))); case 0x3a: { int exp; ST2 = make_float(frexp(get_float(ST1), &exp)); return cons(ST2, fixnum_value(exp)); } case 0x3b: return make_float(log(get_float(ST1))); case 0x3c: return make_float(log10(get_float(ST1))); case 0x3d: { double integral_part; ST2 = make_float(modf(get_float(ST1), &integral_part)); ST3 = make_float(integral_part); return cons(ST2, ST3); } case 0x3e: return make_float(sqrt(get_float(ST1))); case 0x3f: return make_float(ceil(get_float(ST1))); case 0x40: return make_float(fabs(get_float(ST1))); case 0x41: return make_float(floor(get_float(ST1))); case 0x50: return make_float(erf(get_float(ST1))); case 0x51: return make_float(erfc(get_float(ST1))); case 0x52: return make_float(j0(get_float(ST1))); case 0x53: return make_float(j1(get_float(ST1))); case 0x54: { int signgamp; ST2 = make_float(lgamma_r(get_float(ST1), &signgamp)); return cons(ST2, fixnum_value(signgamp)); } case 0x55: return make_float(y0(get_float(ST1))); case 0x56: return make_float(y1(get_float(ST1))); case 0x57: return make_float(asinh(get_float(ST1))); case 0x58: return make_float(acosh(get_float(ST1))); case 0x59: return make_float(atanh(get_float(ST1))); case 0x5a: return make_float(cbrt(get_float(ST1))); case 0x5b: return make_float(logb(get_float(ST1))); case 0x5c: return make_float(expm1(get_float(ST1))); case 0x5d: return make_float(ilogb(get_float(ST1))); case 0x5e: return make_float(log1p(get_float(ST1))); case 0x70: return boolean_value(isnormal(get_float(ST1))); case 0x71: return boolean_value(isfinite(get_float(ST1))); case 0x72: return boolean_value(fpclassify(get_float(ST1)) == FP_SUBNORMAL); case 0x73: return boolean_value(isinf(get_float(ST1))); case 0x74: return boolean_value(isnan(get_float(ST1))); default: release_assert(NOTREACHED("Invalid unary sub-bytecode.")); } return UNDEFINED; } static void run_statement(interp_state_t *state, uint8_t code, uint8_t in1, uint8_t in2, uint32_t in3) { ST1 = get_input(state, in1); ST2 = get_input(state, in2); if (code >= 0x60) { ST3 = get_input(state, in3); } switch (code) { case 0x40: get_box(ST1)->value = ST2; break; case 0x41: get_pair(ST1)->car = ST2; break; case 0x42: get_pair(ST1)->cdr = ST2; break; case 0x60: vector_set(ST1, get_fixnum(ST2), ST3); break; case 0x61: byte_string_set(ST1, get_fixnum(ST2), (char)get_fixnum(ST3)); break; case 0x62: struct_set(ST1, get_fixnum(ST2), ST3); break; } } static value_t get_input(const interp_state_t *state, fixnum_t var) { release_assert((var >= 0) && (var <= 255)); switch (var) { case 0: return NIL; case 1 ... 63: { vector_t *vec = get_vector(_LAMBDA_SLOT(state->lambda.value, GLOBAL_VARS)); var -= 1; release_assert(var < vec->size); return vec->elements[var]; } case 64 ... 127: { vector_t *vec = get_vector(_LAMBDA_SLOT(state->lambda.value, INSTANCE_VARS)); var -= 64; release_assert(var < vec->size); return vec->elements[var]; } case 128 ... 247: { /* Frame is allocated by interpreter, so we know it's a vector already. */ vector_t *vec = _get_vector(state->frame.value); var -= 128; release_assert(var < state->nframe); return vec->elements[var]; } /* 248 ... 251 are reserved */ case 252: return state->lambda.value; case 253: return state->argv.value; case 254: return state->k.value; case 255: return state->ctx.value; default: return UNDEFINED; } } static void set_output(const interp_state_t *state, fixnum_t var, value_t val) { vector_t *vec = _get_vector(state->frame.value); /* Only frame variables can be output targets for bytecode instructions. */ release_assert((var >= 128) && (var <= 255)); var -= 128; release_assert(var < state->nframe); vec->elements[var] = val; } static void register_state(interp_state_t *state, value_t lambda, value_t argv) { register_gc_root(&state->lambda, lambda); register_gc_root(&state->argv, argv); register_gc_root(&state->frame, make_vector(120, UNDEFINED)); register_gc_root(&state->k, FALSE_VALUE); register_gc_root(&state->ctx, FALSE_VALUE); register_gc_root(&state->in1, FALSE_VALUE); register_gc_root(&state->in2, FALSE_VALUE); register_gc_root(&state->in3, FALSE_VALUE); } static void unregister_state(interp_state_t *state) { unregister_gc_root(&state->lambda); unregister_gc_root(&state->argv); unregister_gc_root(&state->frame); unregister_gc_root(&state->k); unregister_gc_root(&state->ctx); unregister_gc_root(&state->in1); unregister_gc_root(&state->in2); unregister_gc_root(&state->in3); } /* vim:set sw=2 expandtab: */