Restructure to include an 80ms timeout—ranking is much worse. TBD.
This commit is contained in:
parent
e0dbc9d164
commit
5546d1bc17
|
|
@ -1,7 +1,9 @@
|
|||
{-# LANGUAGE FlexibleContexts, LambdaCase, TupleSections, UnicodeSyntax #-}
|
||||
{-# LANGUAGE LambdaCase, TupleSections, UnicodeSyntax, Rank2Types #-}
|
||||
{-# LANGUAGE FlexibleContexts, FlexibleInstances, UndecidableInstances #-}
|
||||
|
||||
import Control.Applicative
|
||||
import Control.Arrow (first, second, (&&&))
|
||||
import Control.Concurrent
|
||||
import Control.Monad
|
||||
import Control.Monad.State
|
||||
import Control.Monad.Writer
|
||||
|
|
@ -10,14 +12,17 @@ import Data.List
|
|||
import Data.Maybe
|
||||
import Data.Monoid
|
||||
import Data.Array (Array, (!), (//))
|
||||
import Data.Set (Set)
|
||||
import System.IO
|
||||
import System.Random
|
||||
import System.Time
|
||||
import System.Timeout
|
||||
import System.CPUTime
|
||||
|
||||
import Debug.Trace
|
||||
|
||||
import qualified Data.Array as A
|
||||
import qualified Data.Foldable as F
|
||||
import qualified Data.Traversable as T
|
||||
import qualified Data.Set as S
|
||||
|
||||
{-# ANN module "HLint: ignore Use if" #-}
|
||||
{-# ANN module "HLint: ignore Redundant $" #-}
|
||||
|
|
@ -31,36 +36,35 @@ type Row = Int
|
|||
data Cell = Empty | Skull | Color Color deriving (Eq, Ord, Show)
|
||||
type Grid = Array (Column, Row) Cell
|
||||
|
||||
main :: IO ()
|
||||
main ∷ IO ()
|
||||
main = do
|
||||
hSetBuffering stdout NoBuffering -- DO NOT REMOVE
|
||||
|
||||
flip evalStateT initState $ forever $ do
|
||||
threadDelay =<< randomRIO (0,800000)
|
||||
|
||||
forever $ do
|
||||
blocks ← liftIO (replicateM 8 getBlock)
|
||||
|
||||
start <- liftIO getClockTime
|
||||
start ← liftIO getClockTime
|
||||
|
||||
myGrid ← liftIO getGrid
|
||||
opGrid ← liftIO getGrid
|
||||
|
||||
((col, rot), debug) ← runWriterT (step blocks myGrid)
|
||||
liftIO $ mapM_ (hPutStrLn stderr) debug
|
||||
|
||||
end <- col `seq` rot `seq` liftIO getClockTime
|
||||
let limiter = evaluateListWithTimeout 88000
|
||||
(col, rot) ← step limiter blocks myGrid
|
||||
|
||||
end ← col `seq` rot `seq` liftIO getClockTime
|
||||
let ms = round ((end `diffSeconds` start) * 1000)
|
||||
liftIO $ putStrLn $ unwords [show col, show rot, show ms ++ "ms"]
|
||||
|
||||
diffSeconds :: ClockTime -> ClockTime -> Double
|
||||
diffSeconds (TOD s' p') (TOD s p) =
|
||||
fromIntegral ((s' - s) * 1000000000000 + (p' - p)) / 1e12
|
||||
liftIO $ hPutStrLn stderr $ show ms ++ "ms"
|
||||
liftIO $ putStrLn $ unwords [show col, show rot]
|
||||
|
||||
getBlock :: IO Block
|
||||
getBlock ∷ IO Block
|
||||
getBlock = do
|
||||
[colorA, colorB] ← map read . words <$> getLine
|
||||
pure (colorA, colorB)
|
||||
|
||||
getGrid :: IO Grid
|
||||
getGrid ∷ IO Grid
|
||||
getGrid = fmap (A.array ((0,0),(5,11)) . concat) $
|
||||
forM [0..11] $ \row → do
|
||||
line ← getLine
|
||||
|
|
@ -70,57 +74,55 @@ getGrid = fmap (A.array ((0,0),(5,11)) . concat) $
|
|||
cell '0' = Skull
|
||||
cell ch = Color (read [ch])
|
||||
|
||||
type StepState = ()
|
||||
initState = ()
|
||||
newtype Candidates = Candidates [(Int, ((Column, Rotation), Candidates))]
|
||||
|
||||
step :: (Applicative m, MonadState StepState m, MonadWriter [String] m)
|
||||
⇒ [Block] → Grid → m (Column, Rotation)
|
||||
step blocks myGrid = fst <$> step' 0 blocks myGrid
|
||||
step ∷ Functor f ⇒ (∀a. [a] → f [a]) → [Block] → Grid → f (Column, Rotation)
|
||||
step limiter blocks myGrid = select <$> limiter stream
|
||||
where
|
||||
Candidates start = candidates blocks myGrid
|
||||
stream = deepen (take 11 start)
|
||||
deepen cs = (cs ++) $ do
|
||||
k ← [0..]
|
||||
n ← [0..8]
|
||||
mapMaybe (follow n <=< other k) cs
|
||||
dummy = (-1000000, ((0, 0), Candidates []))
|
||||
follow 0 c = Just c
|
||||
follow _ (_, (_, Candidates [])) = Nothing
|
||||
follow n (_, (_, Candidates (c':_))) = follow (n-1) c'
|
||||
other n c@(_, (_, Candidates cs)) = listToMaybe (drop n cs)
|
||||
select cs = trace (show $ length cs)
|
||||
$ fst $ snd $ maximumBy (compare `on` fst) (dummy:cs)
|
||||
|
||||
step' :: (Applicative m, MonadState StepState m, MonadWriter [String] m)
|
||||
⇒ Int → [Block] → Grid → m ((Column, Rotation), Int)
|
||||
step' depth (block:blocks) myGrid = do
|
||||
let try c rot = do
|
||||
result ← simulate myGrid block c rot
|
||||
pure (score result, (result, (c, rot)))
|
||||
let candidates = catMaybes $ try <$> [3,2,4,1,5,0] <*> [1,3,0,2]
|
||||
let best = sortBy (flip compare `on` fst) candidates
|
||||
candidates ∷ [Block] → Grid → Candidates
|
||||
candidates [] _ = Candidates []
|
||||
candidates (block:blocks) grid = Candidates best
|
||||
where
|
||||
try c rot = do
|
||||
(grid', points) ← simulate grid block c rot
|
||||
let score1 = score grid' points
|
||||
let adjust (score2, (mv', cs')) =
|
||||
let scoreAvg = (2 * score1 + 3 * score2) `div` 5
|
||||
in (scoreAvg, ((c, rot), cs'))
|
||||
let Candidates cs = candidates blocks grid'
|
||||
pure $! score1 `seq` (score1, ((c, rot), Candidates (map adjust cs)))
|
||||
hint = uncurry (+) block `div` 2
|
||||
columns = filter (\c → c >= 0 && c <= 5) $ map (hint +) [0,-1,1,-2,2,-3,3,-4,4,-5,5]
|
||||
rotations = [1,0,3,2]
|
||||
best = sortBy (flip compare `on` fst) . catMaybes
|
||||
$ try <$> columns <*> rotations
|
||||
|
||||
let limit = case depth of { 0 -> 9; 1 -> 1; _ -> 1 }
|
||||
best' ← if length (take limit best) < 1 || null blocks then pure best else do
|
||||
s ← get
|
||||
candidates' ← forM (take limit best) $
|
||||
\(score1, ((grid', points), (c, rot))) → do
|
||||
let ((_, score2), w) = flip evalState s $ runWriterT $
|
||||
step' (depth + 1) blocks grid'
|
||||
tell w
|
||||
pure (score1 + score2, ((grid', points), (c, rot)))
|
||||
pure $ sortBy (flip compare `on` fst) candidates'
|
||||
|
||||
-- tell [show depth ++ ": " ++ show (map fst $ take limit best')]
|
||||
|
||||
case best' of
|
||||
[] → pure ((0, 0), -1000000)
|
||||
((score1, (_, move1)):_) → pure (move1, score1)
|
||||
|
||||
score :: (Grid, Int) → Int
|
||||
score (grid, points) = 1000*points + 5*nonSkulls + matches
|
||||
score ∷ Grid → Int → Int
|
||||
score grid points = 10*points + matches -- + 50*nonSkulls
|
||||
where
|
||||
free = length $ filter (== Empty) $ A.elems grid
|
||||
nonSkulls = length $ filter (/= Skull) $ A.elems grid
|
||||
levels = length $ takeWhile emptyLevel [0..11]
|
||||
matches = sum . map (^2) . filter (> 1) . map length $ colorGroups
|
||||
emptyLevel r = all (\c → grid!(c,r) == Empty) [0..5]
|
||||
matches = sum (map (matchingNeighbours grid) (A.indices grid))
|
||||
colorCells = filter (isColor . snd) $ A.assocs grid
|
||||
colorGroups = connectedGroups adjacentMatch colorCells
|
||||
|
||||
matchingNeighbours grid (col, row) = if isColor cell then sum (map match ns) else 0
|
||||
where
|
||||
cell = grid!(col, row)
|
||||
ns = [(col,row-1), (col,row+1), (col-1,row), (col+1,row)]
|
||||
match (c, r) | c < 0 || c > 5 || r < 0 || r > 11 = 0
|
||||
| grid!(c,r) == cell = 1
|
||||
| otherwise = 0
|
||||
|
||||
simulate :: Grid → Block → Column → Rotation → Maybe (Grid, Int)
|
||||
simulate ∷ Grid → Block → Column → Rotation → Maybe (Grid, Int)
|
||||
simulate grid (colorA, colorB) col rot
|
||||
| not (A.inRange (A.bounds grid) crA) ||
|
||||
not (A.inRange (A.bounds grid) crB) ||
|
||||
|
|
@ -134,7 +136,17 @@ simulate grid (colorA, colorB) col rot
|
|||
3 → ((col,0), (col, 1))
|
||||
startGrid = grid // [ (crB, Color colorB), (crA, Color colorA) ]
|
||||
|
||||
simFall :: (Applicative m, MonadWriter (Sum Int) m) ⇒ Grid → Int → m Grid
|
||||
addSkulls ∷ Int → Grid → Grid
|
||||
addSkulls nskulls grid = newGrid
|
||||
where
|
||||
packColumn c = zipWith (\r x → ((c,r),x)) [11,10..0]
|
||||
$ (++ repeat Empty)
|
||||
$ (++ replicate nskulls Skull)
|
||||
$ takeWhile (/= Empty)
|
||||
$ map (\r → grid!(c,r)) [11,10..0]
|
||||
newGrid = A.array ((0,0),(5,11)) $ concatMap packColumn [0..5]
|
||||
|
||||
simFall ∷ (Applicative m, MonadWriter (Sum Int) m) ⇒ Grid → Int → m Grid
|
||||
simFall grid = simDisappear newGrid
|
||||
where
|
||||
packColumn c = zipWith (\r x → ((c,r),x)) [11,10..0]
|
||||
|
|
@ -143,7 +155,7 @@ simFall grid = simDisappear newGrid
|
|||
$ map (\r → grid!(c,r)) [11,10..0]
|
||||
newGrid = A.array ((0,0),(5,11)) $ concatMap packColumn [0..5]
|
||||
|
||||
simDisappear :: (Applicative m, MonadWriter (Sum Int) m) ⇒ Grid → Int → m Grid
|
||||
simDisappear ∷ (Applicative m, MonadWriter (Sum Int) m) ⇒ Grid → Int → m Grid
|
||||
simDisappear grid stage = case null erased of
|
||||
True → pure grid
|
||||
False → do
|
||||
|
|
@ -152,9 +164,9 @@ simDisappear grid stage = case null erased of
|
|||
where
|
||||
colorCells = filter (isColor . snd) $ A.assocs grid
|
||||
skullCells = filter ((== Skull) . snd) $ A.assocs grid
|
||||
groups = connectedGroups adjacentMatch (S.fromList colorCells)
|
||||
largeGroups = filter ((>= 4) . S.size) groups
|
||||
erasedColors = concatMap S.toList largeGroups
|
||||
groups = connectedGroups adjacentMatch colorCells
|
||||
largeGroups = filter ((>= 4) . length) groups
|
||||
erasedColors = concat largeGroups
|
||||
erasedSkulls = filter (\(cr,_) → any (adjacent cr . fst) erasedColors) skullCells
|
||||
erased = erasedColors ++ erasedSkulls
|
||||
erasedGrid = grid // map (second (const Empty)) erased
|
||||
|
|
@ -162,30 +174,72 @@ simDisappear grid stage = case null erased of
|
|||
chainPower = if stage < 2 then 0 else 8 * 2^(stage-2)
|
||||
uniqueColors = length . nub $ map snd erasedColors
|
||||
colorBonus = if uniqueColors < 2 then 0 else 2^(uniqueColors-1)
|
||||
groupBonus = sum (map (perGroupBonus . S.size) largeGroups)
|
||||
groupBonus = sum (map (perGroupBonus . length) largeGroups)
|
||||
perGroupBonus n = if n >= 11 then 8 else n - 4
|
||||
scale = max 1 $ min 999 $ chainPower + colorBonus + groupBonus
|
||||
|
||||
isColor :: Cell → Bool
|
||||
isColor ∷ Cell → Bool
|
||||
isColor Empty = False
|
||||
isColor Skull = False
|
||||
isColor (Color _) = True
|
||||
|
||||
adjacent :: (Column,Row) → (Column,Row) → Bool
|
||||
adjacent ∷ (Column,Row) → (Column,Row) → Bool
|
||||
adjacent (c1,r1) (c2,r2) = (c1 == c2 && (r1 == r2 - 1 || r1 == r2 + 1)) ||
|
||||
(r1 == r2 && (c1 == c2 - 1 || c1 == c2 + 1))
|
||||
|
||||
adjacentMatch :: ((Column, Row), Cell) → ((Column, Row), Cell) → Bool
|
||||
adjacentMatch ∷ ((Column, Row), Cell) → ((Column, Row), Cell) → Bool
|
||||
adjacentMatch (cr1,x1) (cr2,x2) = x1 == x2 && adjacent cr1 cr2
|
||||
|
||||
connectedGroups :: Ord a ⇒ (a → a → Bool) → Set a → [Set a]
|
||||
connectedGroups p rem = case S.minView rem of
|
||||
Nothing → []
|
||||
Just (x, rem') →
|
||||
let go fringe others = case S.minView fringe of
|
||||
Nothing → (S.empty, others)
|
||||
Just (y, fringe') → case S.partition (p y) others of
|
||||
(adj, notAdj) → first (S.insert y) $
|
||||
go (S.union fringe' adj) notAdj
|
||||
(conn, notConn) = go (S.singleton x) rem'
|
||||
connectedGroups ∷ (a → a → Bool) → [a] → [[a]]
|
||||
connectedGroups p rem = case rem of
|
||||
[] → []
|
||||
(x:rem') →
|
||||
let go fringe others = case fringe of
|
||||
[] → ([], others)
|
||||
(y:fringe') →
|
||||
let (adj, notAdj) = partition (p y) others
|
||||
in first (y:) $ go (fringe' ++ adj) notAdj
|
||||
(conn, notConn) = go [x] rem'
|
||||
in conn : connectedGroups p notConn
|
||||
|
||||
diffSeconds ∷ ClockTime → ClockTime → Double
|
||||
diffSeconds (TOD s' p') (TOD s p) =
|
||||
fromIntegral ((s' - s) * 1000000000000 + (p' - p)) / 1e12
|
||||
|
||||
-- From package "random", not available in CodinGame
|
||||
class Monad m ⇒ MonadRandom m where
|
||||
getRandom ∷ Random a ⇒ m a
|
||||
getRandoms ∷ Random a ⇒ m [a]
|
||||
getRandomR ∷ Random a ⇒ (a, a) → m a
|
||||
getRandomRs ∷ Random a ⇒ (a, a) → m [a]
|
||||
|
||||
instance MonadIO m ⇒ MonadRandom m where
|
||||
getRandom = liftIO randomIO
|
||||
getRandoms = liftIO $ fmap randoms newStdGen
|
||||
getRandomR = liftIO . randomRIO
|
||||
getRandomRs r = liftIO $ fmap (randomRs r) newStdGen
|
||||
|
||||
shuffle ∷ MonadRandom m ⇒ [a] → m [a]
|
||||
shuffle [] = return []
|
||||
shuffle [x] = return [x]
|
||||
shuffle xs = do
|
||||
i ← getRandomR (0, length xs - 1)
|
||||
let (as, x:bs) = splitAt i xs
|
||||
xs' ← shuffle (as ++ bs)
|
||||
return (x:xs')
|
||||
|
||||
-- Compute elements of the list to WHNF for `t` microseconds. After
|
||||
-- `t` microseconds, abandon the calculation and terminate the list.
|
||||
evaluateListWithTimeout :: Integer -> [a] -> IO [a]
|
||||
evaluateListWithTimeout t xs = do
|
||||
end <- (+) <$> getCPUTime <*> pure (1000000 * t)
|
||||
flip fix xs $ \loop xs -> do
|
||||
now <- getCPUTime
|
||||
r <- timeout (fromIntegral $ max 0 (end - now) `div` 1000000) $
|
||||
case xs of
|
||||
[] -> pure []
|
||||
(a:as) -> pure $! a `seq` (a:as)
|
||||
case r of
|
||||
Nothing -> pure []
|
||||
Just [] -> pure []
|
||||
Just (a:as) -> (a:) <$> loop as
|
||||
|
|
|
|||
Loading…
Reference in New Issue