Add solutions for problems 9-12.

This commit is contained in:
Jesse D. McDonald 2015-08-02 20:05:13 -05:00
parent c93bc758ce
commit 8b0c447bce
8 changed files with 133 additions and 9 deletions

2
.gitignore vendored
View File

@ -1,3 +1,5 @@
.*.swp
*~
*.o *.o
*.hi *.hi
Problem[0-9] Problem[0-9]

51
Euler.hs Normal file
View File

@ -0,0 +1,51 @@
{-# LANGUAGE BangPatterns, ScopedTypeVariables, FlexibleContexts #-}
module Euler
( whenM
, unlessM
, primesTo
, primes
, zipArraysWith
, RangeIx(..)
) where
import Control.Applicative
import Control.Monad
import Control.Monad.ST
import Control.Monad.Writer
import Data.Array.ST
import Data.Array.Unboxed
import Data.Word
import qualified Control.Monad.ST.Lazy as LST
whenM, unlessM :: Monad m => m Bool -> m () -> m ()
whenM mc m = mc >>= (\c -> when c m)
unlessM mc m = mc >>= (\c -> unless c m)
primesTo n = LST.runST $ do
isPrime <- LST.strictToLazyST (newArray (2, n) 1 :: ST s (STUArray s Integer Word8))
let primesFrom m = if m > n then return [] else do
p <- LST.strictToLazyST (readArray isPrime m)
if p == 0 then primesFrom (m+1) else do
LST.strictToLazyST $ forM_ [2*m,3*m..n] $ \i -> writeArray isPrime i 0
(m:) <$> primesFrom (m+1)
primesFrom 2
primes :: [Integer]
primes = let go (!p:xs) = p : go [ x | x <- xs, x `mod` p /= 0 ] in go [2..]
class Ix a => RangeIx a where
intersectBounds :: (a, a) -> (a, a) -> (a, a)
instance RangeIx Int where
intersectBounds (al, au) (bl, bu) = (max al bl, min au bu)
instance (RangeIx a, RangeIx b) => RangeIx (a, b) where
intersectBounds ((al,bl),(au,bu)) ((cl,dl),(cu,du)) =
((max al cl, max bl dl), (min au cu, min bu du))
zipArraysWith :: (IArray arrA a, IArray arrB b, IArray arrC c, RangeIx i)
=> (a -> b -> c) -> arrA i a -> arrB i b -> arrC i c
zipArraysWith f as bs = array newRange $ [ (i, f (as!i) (bs!i)) | i <- range newRange ]
where newRange = intersectBounds (bounds as) (bounds bs)

4
Problem10.hs Normal file
View File

@ -0,0 +1,4 @@
-- Find the sum of all the primes below two million.
import Euler
main = print $ sum $ primesTo 1999999

47
Problem11.hs Normal file
View File

@ -0,0 +1,47 @@
{-# LANGUAGE FlexibleInstances, UndecidableInstances #-}
import Data.Array.Unboxed
import Euler
-- What is the greatest product of four adjacent numbers in the same direction
-- (up, down, left, right, or diagonally) in the 20×20 grid?
--
grid :: UArray (Int, Int) Int
grid = listArray ((1,1),(20,20)) $
[ 08, 02, 22, 97, 38, 15, 00, 40, 00, 75, 04, 05, 07, 78, 52, 12, 50, 77, 91, 08
, 49, 49, 99, 40, 17, 81, 18, 57, 60, 87, 17, 40, 98, 43, 69, 48, 04, 56, 62, 00
, 81, 49, 31, 73, 55, 79, 14, 29, 93, 71, 40, 67, 53, 88, 30, 03, 49, 13, 36, 65
, 52, 70, 95, 23, 04, 60, 11, 42, 69, 24, 68, 56, 01, 32, 56, 71, 37, 02, 36, 91
, 22, 31, 16, 71, 51, 67, 63, 89, 41, 92, 36, 54, 22, 40, 40, 28, 66, 33, 13, 80
, 24, 47, 32, 60, 99, 03, 45, 02, 44, 75, 33, 53, 78, 36, 84, 20, 35, 17, 12, 50
, 32, 98, 81, 28, 64, 23, 67, 10, 26, 38, 40, 67, 59, 54, 70, 66, 18, 38, 64, 70
, 67, 26, 20, 68, 02, 62, 12, 20, 95, 63, 94, 39, 63, 08, 40, 91, 66, 49, 94, 21
, 24, 55, 58, 05, 66, 73, 99, 26, 97, 17, 78, 78, 96, 83, 14, 88, 34, 89, 63, 72
, 21, 36, 23, 09, 75, 00, 76, 44, 20, 45, 35, 14, 00, 61, 33, 97, 34, 31, 33, 95
, 78, 17, 53, 28, 22, 75, 31, 67, 15, 94, 03, 80, 04, 62, 16, 14, 09, 53, 56, 92
, 16, 39, 05, 42, 96, 35, 31, 47, 55, 58, 88, 24, 00, 17, 54, 24, 36, 29, 85, 57
, 86, 56, 00, 48, 35, 71, 89, 07, 05, 44, 44, 37, 44, 60, 21, 58, 51, 54, 17, 58
, 19, 80, 81, 68, 05, 94, 47, 69, 28, 73, 92, 13, 86, 52, 17, 77, 04, 89, 55, 40
, 04, 52, 08, 83, 97, 35, 99, 16, 07, 97, 57, 32, 16, 26, 26, 79, 33, 27, 98, 66
, 88, 36, 68, 87, 57, 62, 20, 72, 03, 46, 33, 67, 46, 55, 12, 32, 63, 93, 53, 69
, 04, 42, 16, 73, 38, 25, 39, 11, 24, 94, 72, 18, 08, 46, 29, 32, 40, 62, 76, 36
, 20, 69, 36, 41, 72, 30, 23, 88, 34, 62, 99, 69, 82, 67, 59, 85, 74, 04, 36, 16
, 20, 73, 35, 29, 78, 31, 90, 01, 74, 31, 49, 71, 48, 86, 81, 16, 23, 57, 05, 54
, 01, 70, 54, 71, 83, 51, 54, 69, 16, 92, 33, 48, 61, 43, 52, 01, 89, 19, 67, 48
]
times :: (IArray a e, RangeIx i, Num e) => a i e -> a i e -> a i e
a `times` b = zipArraysWith (*) a b
infixl 7 `times`
across n = ixmap ((1,1),( 20 ,20-n)) (\(a,b) -> ( a ,b+n)) grid
down n = ixmap ((1,1),(20-n, 20 )) (\(a,b) -> (a+n, b )) grid
diag1 n = ixmap ((1,1),(20-n,20-n)) (\(a,b) -> (a+n,b+n)) grid
diag2 n = ixmap ((1,1+n),(20-n,20)) (\(a,b) -> (a+n,b-n)) grid
acrossProducts = grid `times` across 1 `times` across 2 `times` across 3
downProducts = grid `times` down 1 `times` down 2 `times` down 3
diagProducts1 = grid `times` diag1 1 `times` diag1 2 `times` diag1 3
diagProducts2 = grid `times` diag2 1 `times` diag2 2 `times` diag2 3
main = print $ maximum $ concatMap elems $
[acrossProducts, downProducts, diagProducts1, diagProducts2]

8
Problem12.hs Normal file
View File

@ -0,0 +1,8 @@
-- The sequence of triangle numbers is generated by adding the natural numbers.
-- So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. ...
-- What is the value of the first triangle number to have over five hundred divisors?
import Data.List
triangles = scanl1 (+) [1..] :: [Int]
divisors n = concat [ [m, q] | m <- takeWhile (\x -> x^2 <= n) [1..], let (q, r) = n `divMod` m, r == 0 ]
main = print $ head $ [ n | n <- triangles, length (divisors n) > 500 ]

View File

@ -1,10 +1,9 @@
-- What is the largest prime factor of the number 600851475143 ? -- What is the largest prime factor of the number 600851475143 ?
n `divides` m = m `mod` n == 0 import Euler
primes = go [2..] where go (p:ps) = p : go (filter (\n -> not (p `divides` n)) ps)
factors n = go primes n factors n = go (primes ()) n
where go (p:ps) n | n < p = [] where go (p:ps) n | n < p = []
| p `divides` n = p : go (p:ps) (n `div` p) | n `mod` p == 0 = p : go (p:ps) (n `div` p)
| otherwise = go ps n | otherwise = go ps n
main = print $ last $ factors 600851475143 main = print $ last $ factors 600851475143

View File

@ -1,4 +1,3 @@
-- What is the 10 001st prime number? -- What is the 10 001st prime number?
primes :: [Int] import Euler
primes = let go (p:ps) = p : go [ n | n <- ps, n `mod` p /= 0 ] in go [2..] main = print $ primesTo 1000000 !! 10000
main = print $ primes !! 10000

14
Problem9.hs Normal file
View File

@ -0,0 +1,14 @@
-- A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
--
-- a^2 + b^2 = c^2
--
-- For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
--
-- There exists exactly one Pythagorean triplet for which a + b + c = 1000.
-- Find the product abc.
main = print $ head [ a*b*c | a <- [1..1000]
, b <- [a+1..1000-a]
, let c = 1000 - (a + b)
, a^2 + b^2 == c^2
]